scholarly journals Above-ordering-temperature large anomalous Hall effect in a triangular-lattice magnetic semiconductor

2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Masaki Uchida ◽  
Shin Sato ◽  
Hiroaki Ishizuka ◽  
Ryosuke Kurihara ◽  
Taro Nakajima ◽  
...  
2019 ◽  
Vol 33 (13) ◽  
pp. 1950121 ◽  
Author(s):  
Juan Pei ◽  
Shu-Qin Xiao ◽  
Li-Min He ◽  
Kun Zhang ◽  
Huan-Huan Li ◽  
...  

The large nonlinear Hall effect was found in (FeCo)[Formula: see text]Ge[Formula: see text]/Ge heterojunctions formed by sputtering amorphous [Formula: see text]-type (FeCo)[Formula: see text]Ge[Formula: see text] magnetic semiconductor films on near intrinsic n-type Ge substrate. It is very interesting that the mechanisms of the large nonlinear Hall effect in (FeCo)[Formula: see text]Ge[Formula: see text]/Ge heterojunctions are different at different temperature ranges. Below 10 K, the Hall resistance of (FeCo)[Formula: see text]Ge[Formula: see text]/Ge heterojunctions is almost the same as the anomalous Hall effect of (FeCo)[Formula: see text]Ge[Formula: see text] ferromagnetic films. While the temperature increased from 10 to 60 K, the nonlinear Hall resistance, longitudinal conductance, and magnetoresistance all increased quickly and reached the maximum at T[Formula: see text]=[Formula: see text]60 K. In this case, thermally excited conducting carriers can tunnel through the interfacial potential barrier in (FeCo)[Formula: see text]Ge[Formula: see text]/Ge heterojunctions. Thus, in the range of 10–60 K, the enhanced nonlinear Hall resistance can be attributed to the anomalous Hall effect which was further enhanced by interfacial Rashba spin–orbit coupling effect. When the temperature further increased from 60 to 250 K, the interfacial potential barrier weakened gradually, and the Hall resistance and magnetoresistance decreased due to the shunting of the Ge substrate. In this case, the nonlinear Hall effect of (FeCo)[Formula: see text]Ge[Formula: see text]/Ge heterojunctions can be explained very well by the two-band model of nonlinear Hall effect.


2010 ◽  
Vol 105 (13) ◽  
Author(s):  
Hiroshi Takatsu ◽  
Shingo Yonezawa ◽  
Satoshi Fujimoto ◽  
Yoshiteru Maeno

JETP Letters ◽  
2015 ◽  
Vol 101 (2) ◽  
pp. 130-135 ◽  
Author(s):  
E. I. Yakovleva ◽  
L. N. Oveshnikov ◽  
A. V. Kochura ◽  
K. G. Lisunov ◽  
E. Lahderanta ◽  
...  

2018 ◽  
Vol 532 ◽  
pp. 119-125
Author(s):  
Dang Duc Dung ◽  
Jiyoun Choi ◽  
Wuwei Feng ◽  
Nguyen Cao Khang ◽  
Sunglae Cho

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
L. N. Oveshnikov ◽  
V. A. Kulbachinskii ◽  
A. B. Davydov ◽  
B. A. Aronzon ◽  
I. V. Rozhansky ◽  
...  

2012 ◽  
Vol 100 (9) ◽  
pp. 092404 ◽  
Author(s):  
Jia-Hsien Yao ◽  
Hsiu-Hau Lin ◽  
Yun-Liang Soo ◽  
Tai-Sing Wu ◽  
Jai-Lin Tsai ◽  
...  

2017 ◽  
Vol 124 (3) ◽  
pp. 493-495
Author(s):  
R. K. Arslanov ◽  
T. R. Arslanov ◽  
M. I. Daunov

Sign in / Sign up

Export Citation Format

Share Document