Spectrum Line Intensity as a Surrogate for Solar Irradiance Variations

Science ◽  
1988 ◽  
Vol 240 (4860) ◽  
pp. 1765-1765 ◽  
Author(s):  
W. C. Livingston ◽  
L. Wallace ◽  
O. R. White

Active Cavity Radiometer Irradiance Monitor (ACRIM) solar constant measurements from 1980 to 1986 are compared with ground-based, irradiance spectrophotometry of selected Fraunhofer lines. Both data sets were identically sampled and smoothed with an 85-day running mean, and the ACRIM total solar irradiance (S) values were corrected for sunspot blocking (Sc). The strength of the mid-photospheric manganese 539.4-nanometer line tracks almost perfectly with ACRIM Se, Other spectral features formed high in the photosphere and chromosphere also track well. These comparisons independently confirm the variability in the ACRIM Se, signal, indicate that the source of irradiance is faculae, and indicate that ACRIM Se, follows the 11-year activity cycle.

Author(s):  
Douglas V. Hoyt ◽  
Kenneth H. Shatten

In the last chapter we saw that sunspots, aurorae, and geomagnetic disturbances vary in an 11-year cycle. So do many other solar features, including faculae and plages, which are bright regions seen in visible and monochromatic light, respectively. If both bright faculae and dark sunspots follow 11-year cycles, does this mean the sun’s total light output varies? Or are these two contrasting features balanced so that the sun’s output of light remains constant? The light output of the sun is often discussed in two different ways: either as the solar luminosity, which is the sun’s omnidirectional radiant output, or as the solar constant, the output seen in the direction of the Earth. In this chapter, we explore the variable solar light output that has been the subject of vigorous discussions. The total solar irradiance or solar constant is defined as the total radiant power passing through a unit area at Earth’s mean orbital distance of 1 astronomical unit. Today the most common units of solar irradiance are watts per square meter (W/m2). Power is defined as energy per unit time, so the solar irradiance can also be expressed in calories per square centimeter per minute. Modern experiments indicate that the sun’s radiant output is about 1367 W/m2, with an uncertainty of about 4 W/m2. About 150 years of effort by many people have been required to establish the value to this accuracy. The sun’s radiant output is not an easy quantity to measure, and we will discuss some of the struggles required to measure it. In the late 1800s, many scientists considered the solar total irradiance or solar irradiance to be constant. Oceanographers Dove and Maury vigorously supported this viewpoint, so the solar irradiance was called the solar constant. For the next century, virtually every paper concerning the sun’s radiant output used the term solar constant. No physical justification for this nomenclature existed, only a philosophical bias. Yet by the 1950s this bias proved so strong and so prevalent that support for individuals who wished to measure variations in the solar constant became almost nonexistent.


1993 ◽  
Vol 157 ◽  
pp. 107-107
Author(s):  
W. Schröder ◽  
H.J. Treder

The fundamental quantity for the total solar irradiance is the solar constant J which is determined by the mean Sun-Earth distance and by the energy budget in the interior of the sun. The mean distance is the major semi-axis of the earth orbit and therefore a constant of celestial mechanics. The energy production and transport in the interior of the sun must be constant at least during a Helmholtz-Kelvin period. Actually, the heat budget of the sun is constant during some billion years.


2001 ◽  
Vol 106 (A8) ◽  
pp. 15759-15765 ◽  
Author(s):  
S. Dewitte ◽  
A. Joukoff ◽  
D. Crommelynck ◽  
R. B. Lee ◽  
R. Helizon ◽  
...  

Solar Physics ◽  
2021 ◽  
Vol 296 (3) ◽  
Author(s):  
Baoqi Song ◽  
Xin Ye ◽  
Wolfgang Finsterle ◽  
Manfred Gyo ◽  
Matthias Gander ◽  
...  

Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
V. Courtillot ◽  
F. Lopes ◽  
J. L. Le Mouël

AbstractThis article deals with the prediction of the upcoming solar activity cycle, Solar Cycle 25. We propose that astronomical ephemeris, specifically taken from the catalogs of aphelia of the four Jovian planets, could be drivers of variations in solar activity, represented by the series of sunspot numbers (SSN) from 1749 to 2020. We use singular spectrum analysis (SSA) to associate components with similar periods in the ephemeris and SSN. We determine the transfer function between the two data sets. We improve the match in successive steps: first with Jupiter only, then with the four Jovian planets and finally including commensurable periods of pairs and pairs of pairs of the Jovian planets (following Mörth and Schlamminger in Planetary Motion, Sunspots and Climate, Solar-Terrestrial Influences on Weather and Climate, 193, 1979). The transfer function can be applied to the ephemeris to predict future cycles. We test this with success using the “hindcast prediction” of Solar Cycles 21 to 24, using only data preceding these cycles, and by analyzing separately two 130 and 140 year-long halves of the original series. We conclude with a prediction of Solar Cycle 25 that can be compared to a dozen predictions by other authors: the maximum would occur in 2026.2 (± 1 yr) and reach an amplitude of 97.6 (± 7.8), similar to that of Solar Cycle 24, therefore sketching a new “Modern minimum”, following the Dalton and Gleissberg minima.


Solar Physics ◽  
1994 ◽  
Vol 152 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Judit M. Pap ◽  
Richard C. Willson ◽  
Claus Fr�hlich ◽  
Richard F. Donnelly ◽  
Larry Puga

Sign in / Sign up

Export Citation Format

Share Document