Power-Law Distribution of the World Wide Web

Science ◽  
2000 ◽  
Vol 287 (5461) ◽  
pp. 2115 ◽  
Author(s):  
Lada A. Adamic ◽  
Bernardo A. Huberman ◽  
A.-L. Barabási ◽  
R. Albert ◽  
H. Jeong ◽  
...  
2012 ◽  
Vol 229-231 ◽  
pp. 1854-1857
Author(s):  
Xin Yi Chen

Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a power-law distribution. This feature was found to be a consequence of three generic mechanisms: (i) networks expand continuously by the addition of new vertices, (ii) new vertex with priority selected different edges of weighted selected that connected to different vertices in the system, and (iii) by the fitness probability that a new vertices attach preferentially to sites that are already well connected. A model based on these ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena. Experiment results show that the model is more close to the actual Internet network.


2012 ◽  
Vol 1 (2) ◽  
pp. 63-70
Author(s):  
Zhaoyan Jin ◽  
Quanyuan Wu

The PageRank vector of a network is very important, for it can reflect the importance of a Web page in the World Wide Web, or of a people in a social network. However, with the growth of the World Wide Web and social networks, it needs more and more time to compute the PageRank vector of a network. In many real-world applications, the degree and PageRank distributions of these complex networks conform to the Power-Law distribution. This paper utilizes the degree distribution of a network to initialize its PageRank vector, and presents a Power-Law degree distribution accelerating algorithm of PageRank computation. Experiments on four real-world datasets show that the proposed algorithm converges more quickly than the original PageRank algorithm.DOI: 10.18495/comengapp.12.063070


2002 ◽  
Vol 7 (1) ◽  
pp. 9-25 ◽  
Author(s):  
Moses Boudourides ◽  
Gerasimos Antypas

In this paper we are presenting a simple simulation of the Internet World-Wide Web, where one observes the appearance of web pages belonging to different web sites, covering a number of different thematic topics and possessing links to other web pages. The goal of our simulation is to reproduce the form of the observed World-Wide Web and of its growth, using a small number of simple assumptions. In our simulation, existing web pages may generate new ones as follows: First, each web page is equipped with a topic concerning its contents. Second, links between web pages are established according to common topics. Next, new web pages may be randomly generated and subsequently they might be equipped with a topic and be assigned to web sites. By repeated iterations of these rules, our simulation appears to exhibit the observed structure of the World-Wide Web and, in particular, a power law type of growth. In order to visualise the network of web pages, we have followed N. Gilbert's (1997) methodology of scientometric simulation, assuming that web pages can be represented by points in the plane. Furthermore, the simulated graph is found to possess the property of small worlds, as it is the case with a large number of other complex networks.


2009 ◽  
Author(s):  
Blair Williams Cronin ◽  
Ty Tedmon-Jones ◽  
Lora Wilson Mau

2019 ◽  
pp. 3-6
Author(s):  
D. A. Bogdanova

The article provides an overview of the activities of the European Union Forum on kids' safety in Internet — Safer Internet Forum (SIF) 2019, which was held in Brussels, Belgium, in November 2019. The current Internet risks addressed by the World Wide Web users, especially children, are described.


Sign in / Sign up

Export Citation Format

Share Document