scholarly journals Spatiotemporal mode-locking in multimode fiber lasers

Science ◽  
2017 ◽  
Vol 358 (6359) ◽  
pp. 94-97 ◽  
Author(s):  
Logan G. Wright ◽  
Demetrios N. Christodoulides ◽  
Frank W. Wise

A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anson Hook ◽  
Gustavo Marques-Tavares ◽  
Clayton Ristow

Abstract We present the supernova constraints on an axion-photon-dark photon coupling, which can be the leading coupling to dark sector models and can also lead to dramatic changes to axion cosmology. We show that the supernova bound on this coupling has two unusual features. One occurs because the scattering that leads to the trapping regime converts axions and dark photons into each other. Thus, if one of the two new particles is sufficiently massive, both production and scattering become suppressed and the bounds from bulk emission and trapped (area) emission both weaken exponentially and do not intersection The other unusual feature occurs because for light dark photons, longitudinal modes couple more weakly than transverse modes do. Since the longitudinal mode is more weakly coupled, it can still cause excessive cooling even if the transverse mode is trapped. Thus, the supernova constraints for massive dark photons look like two independent supernova bounds super-imposed on top of each other.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xin Wang ◽  
Zilong Zhang ◽  
Yuan Gao ◽  
Suyi Zhao ◽  
Yuchen Jie ◽  
...  

Optical lattices (OLs) with diverse transverse patterns and optical vortex lattices (OVLs) with special phase singularities have played important roles in the fields of atomic cooling, particle manipulation, quantum entanglement, and optical communication. As a matter of consensus until now, the OL patterns are generated by coherently superimposing multiple transverse modes with a fixed phase difference through the transverse mode locking (TML) effect. There are phase singularities in the dark area of this kind of OL pattern, so it is also called OVL pattern. However, in our research, it is found that some high-order complex symmetric OL patterns can hardly be analyzed by TML model. Instead, the analysis method of incoherent superposition of mode intensity could be applied. The OL pattern obtained by this method can be regarded as in non-TML state. Therefore, in this article, we mainly study the distinct characteristics and properties of OL patterns in TML and non-TML states. Through intensity comparison, interferometry, and beat frequency spectrum, we can effectively distinguish OL pattern in TML and non-TML states, which is of significance to explore the formation of laser transverse pattern possessing OL.


2007 ◽  
Vol 15 (6) ◽  
pp. 3236 ◽  
Author(s):  
Mali Gong ◽  
Yanyang Yuan ◽  
Chen Li ◽  
Ping Yan ◽  
Haitao Zhang ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2731-2761 ◽  
Author(s):  
Lin Huang ◽  
Yusheng Zhang ◽  
Xueming Liu

AbstractCarbon nanotube (CNT) can work as excellent saturable absorber (SA) due to its advantages of fast recovery, low saturation intensity, polarization insensitivity, deep modulation depth, broad operation bandwidth, outstanding environmental stability, and affordable fabrication. Its successful application as SA has promoted the development of scientific research and practical application of mode-locked fiber lasers. Besides, mode-locked fiber laser constitutes an ideal platform for investigating soliton dynamics which exhibit profound nonlinear optical dynamics and excitation ubiquitous in many fields. Up to now, a variety of soliton dynamics have been observed. Among these researches, CNT-SA is a key component that suppresses the environmental perturbation and optimizes the laser system to reveal the true highly stochastic and non-repetitive unstable phenomena of the initial self-starting lasing process. This review is intended to provide an up-to-date introduction to the development of CNT-SA based ultrafast fiber lasers, with emphasis on recent progress in real-time buildup dynamics of solitons in CNT-SA mode-locked fiber lasers. It is anticipated that study of dynamics of solitons can not only further reveal the physical nature of solitons, but also optimize the performance of ultrafast fiber lasers and eventually expand their applications in different fields.


Sign in / Sign up

Export Citation Format

Share Document