scholarly journals A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme

Science ◽  
2018 ◽  
Vol 361 (6407) ◽  
pp. 1098-1101 ◽  
Author(s):  
Evan N. Mirts ◽  
Igor D. Petrik ◽  
Parisa Hosseinzadeh ◽  
Mark J. Nilges ◽  
Yi Lu

Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochromecperoxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved—through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites—to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.

2015 ◽  
Vol 112 (18) ◽  
pp. 5579-5584 ◽  
Author(s):  
Galina V. Dubacheva ◽  
Tine Curk ◽  
Rachel Auzély-Velty ◽  
Daan Frenkel ◽  
Ralf P. Richter

Specific targeting is common in biology and is a key challenge in nanomedicine. It was recently demonstrated that multivalent probes can selectively target surfaces with a defined density of surface binding sites. Here we show, using a combination of experiments and simulations on multivalent polymers, that such “superselective” binding can be tuned through the design of the multivalent probe, to target a desired density of binding sites. We develop an analytical model that provides simple yet quantitative predictions to tune the polymer’s superselective binding properties by its molecular characteristics such as size, valency, and affinity. This work opens up a route toward the rational design of multivalent probes with defined superselective targeting properties for practical applications, and provides mechanistic insight into the regulation of multivalent interactions in biology. To illustrate this, we show how the superselective targeting of the extracellular matrix polysaccharide hyaluronan to its main cell surface receptor CD44 is controlled by the affinity of individual CD44–hyaluronan interactions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hang N. Nielsen ◽  
Kerri Spontarelli ◽  
Rikke Holm ◽  
Jens Peter Andersen ◽  
Anja P. Einholm ◽  
...  

Abstract Three Na+ sites are defined in the Na+-bound crystal structure of Na+, K+-ATPase. Sites I and II overlap with two K+ sites in the K+-bound structure, whereas site III is unique and Na+ specific. A glutamine in transmembrane helix M8 (Q925) appears from the crystal structures to coordinate Na+ at site III, but does not contribute to K+ coordination at sites I and II. Here we address the functional role of Q925 in the various conformational states of Na+, K+-ATPase by examining the mutants Q925A/G/E/N/L/I/Y. We characterized these mutants both enzymatically and electrophysiologically, thereby revealing their Na+ and K+ binding properties. Remarkably, Q925 substitutions had minor effects on Na+ binding from the intracellular side of the membrane – in fact, mutations Q925A and Q925G increased the apparent Na+ affinity – but caused dramatic reductions of the binding of K+ as well as Na+ from the extracellular side of the membrane. These results provide insight into the changes taking place in the Na+-binding sites, when they are transformed from intracellular- to extracellular-facing orientation in relation to the ion translocation process, and demonstrate the interaction between sites III and I and a possible gating function of Q925 in the release of Na+ at the extracellular side.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jothi K. Yuvaraj ◽  
Rebecca E. Roberts ◽  
Yonathan Sonntag ◽  
Xiao-Qing Hou ◽  
Ewald Grosse-Wilde ◽  
...  

Abstract Background Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. Results We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. Conclusions The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.


1991 ◽  
Vol 12 ◽  
pp. 422-426 ◽  
Author(s):  
Ferdinand Hucko ◽  
Jaak Järv ◽  
Christoph Weise

2005 ◽  
Vol 288 (2) ◽  
pp. F327-F333 ◽  
Author(s):  
Rémon A. M. H. Van Aubel ◽  
Pascal H. E. Smeets ◽  
Jeroen J. M. W. van den Heuvel ◽  
Frans G. M. Russel

The end product of human purine metabolism is urate, which is produced primarily in the liver and excreted by the kidney through a well-defined basolateral blood-to-cell uptake step. However, the apical cell-to-urine efflux mechanism is as yet unidentified. Here, we show that the renal apical organic anion efflux transporter human multidrug resistance protein 4 (MRP4), but not apical MRP2, mediates ATP-dependent urate transport via a positive cooperative mechanism ( Km of 1.5 ± 0.3 mM, Vmax of 47 ± 7 pmol·mg−1·min−1, and Hill coefficient of 1.7 ± 0.2). In HEK293 cells overexpressing MRP4, intracellular urate levels were lower than in control cells. Urate inhibited methotrexate transport (IC50 of 235 ± 8 μM) by MRP4, did not affect cAMP transport, whereas cGMP transport was stimulated. Urate shifted cGMP transport by MRP4 from positive cooperativity ( Km and Vmax value of 180 ± 20 μM and 58 ± 4 pmol·mg−1·min−1, respectively, Hill coefficient of 1.4 ± 0.1) to single binding site kinetics ( Km and Vmax value of 2.2 ± 0.9 mM and 280 ± 50 pmol·mg−1·min−1, respectively). Finally, MRP4 could transport urate simultaneously with cAMP or cGMP. We conclude that human MRP4 is a unidirectional efflux pump for urate with multiple allosteric substrate binding sites. We propose MRP4 as a candidate transporter for urinary urate excretion and suggest that MRP4 may also mediate hepatic export of urate into the circulation, because of its basolateral expression in the liver.


Sign in / Sign up

Export Citation Format

Share Document