scholarly journals Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2

Science ◽  
2020 ◽  
pp. eabe4747 ◽  
Author(s):  
Yufei Xiang ◽  
Sham Nambulli ◽  
Zhengyun Xiao ◽  
Heng Liu ◽  
Zhe Sang ◽  
...  

Cost-effective, efficacious therapeutics are urgently needed against the COVID-19 pandemic. Here, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We discovered Nbs with picomolar to femtomolar affinities that inhibit viral infection at sub-ng/ml concentration and determined a structure of one of the most potent in complex with RBD. Structural proteomics and integrative modeling revealed multiple distinct and non-overlapping epitopes and indicated an array of potential neutralization mechanisms. We constructed multivalent Nb constructs that achieved ultrahigh neutralization potency (IC50s as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization, and aerosolization.

2012 ◽  
Vol 11 (12) ◽  
pp. 1405-1413 ◽  
Author(s):  
Shibo Jiang ◽  
Maria Elena Bottazzi ◽  
Lanying Du ◽  
Sara Lustigman ◽  
Chien-Te Kent Tseng ◽  
...  

2009 ◽  
Vol 388 (4) ◽  
pp. 815-823 ◽  
Author(s):  
John E. Pak ◽  
Chetna Sharon ◽  
Malathy Satkunarajah ◽  
Thierry C. Auperin ◽  
Cheryl M. Cameron ◽  
...  

Author(s):  
Yufei Xiang ◽  
Sham Nambulli ◽  
Zhengyun Xiao ◽  
Heng Liu ◽  
Zhe Sang ◽  
...  

AbstractThe outbreak of COVID-19 has severely impacted global health and the economy. Cost-effective, highly efficacious therapeutics are urgently needed. Here, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We discovered multiple elite Nbs with picomolar to femtomolar affinities that inhibit viral infection at sub-ng/ml concentration, more potent than some of the best human neutralizing antibodies. We determined a crystal structure of such an elite neutralizing Nb in complex with RBD. Structural proteomics and integrative modeling revealed multiple distinct and non-overlapping epitopes and indicated an array of potential neutralization mechanisms. Structural characterization facilitated the bioengineering of novel multivalent Nb constructs into multi-epitope cocktails that achieved ultrahigh neutralization potency (IC50s as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization, and aerosolization. These promising agents are readily translated into efficient, cost-effective, and convenient therapeutics to help end this once-in-a-century health crisis.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 60 ◽  
Author(s):  
Yusen Zhou ◽  
Yang Yang ◽  
Jingwei Huang ◽  
Shibo Jiang ◽  
Lanying Du

Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is an infectious virus that was first reported in 2012. The MERS-CoV genome encodes four major structural proteins, among which the spike (S) protein has a key role in viral infection and pathogenesis. The receptor-binding domain (RBD) of the S protein contains a critical neutralizing domain and is an important target for development of MERS vaccines and therapeutics. In this review, we describe the relevant features of the MERS-CoV S-protein RBD, summarize recent advances in the development of MERS-CoV RBD-based vaccines and therapeutic antibodies, and illustrate potential challenges and strategies to further improve their efficacy.


2021 ◽  
Author(s):  
Yen-Pang Hsu ◽  
Debopreeti Mukherjee ◽  
Vladimir Shchurik ◽  
Alexey Makarov ◽  
Benjamin F. Mann

AbstractGlycans of the SARS-CoV-2 spike protein are speculated to play functional roles in the infection processes as they extensively cover the protein surface and are highly conserved across the variants. To date, the spike protein has become the principal target for vaccine and therapeutic development while the exact effects of its glycosylation remain elusive. Experimental reports have described the heterogeneity of the spike protein glycosylation profile. Subsequent molecular simulation studies provided a knowledge basis of the glycan functions. However, there are no studies to date on the role of discrete glycoforms on the spike protein pathobiology. Building an understanding of its role in SARS-CoV-2 is important as we continue to develop effective medicines and vaccines to combat the disease. Herein, we used designed combinations of glycoengineering enzymes to simplify and control the glycosylation profile of the spike protein receptor-binding domain (RBD). Measurements of the receptor binding affinity revealed the regulatory effects of the RBD glycans. Remarkably, opposite effects were observed from differently remodeled glycans, which presents a potential strategy for modulating the spike protein behaviors through glycoengineering. Moreover, we found that the reported anti-SARS-CoV-(2) antibody, S309, neutralizes the impact of different RBD glycoforms on the receptor binding affinity. Overall, this work reports the regulatory roles that glycosylation plays in the interaction between the viral spike protein and host receptor, providing new insights into the nature of SARS-CoV-2. Beyond this study, enzymatic remodeling of glycosylation offers the opportunity to understand the fundamental role of specific glycoforms on glycoconjugates across molecular biology.Covert art LegendsThe glycosylation of the SARS-CoV-2 spike protein receptor-binding domain has regulatory effects on the receptor binding affinity. Sialylation or not determines the “stabilizing” or “destabilizing” effect of the glycans. (Protein structure model is adapted from Protein Data Bank: 6moj. The original model does not contain the glycan structure.)SignificanceGlycans extensively cover the surface of SARS-CoV-2 spike (S) protein but the relationships between the glycan structures and the protein pathological behaviors remain elusive. Herein, we simplified and harmonized the glycan structures in the S protein receptor-binding domain and reported their regulatory roles in human receptor interaction. Opposite regulatory effects were observed and were determined by discrete glycan structures, which can be neutralized by the reported S309 antibody binding to the S protein. This report provides new insight into the mechanism of SARS-CoV-2 S protein infection as well as S309 neutralization.


2009 ◽  
Vol 384 (4) ◽  
pp. 486-490 ◽  
Author(s):  
Lanying Du ◽  
Guangyu Zhao ◽  
Lin Li ◽  
Yuxian He ◽  
Yusen Zhou ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tiong Kit Tan ◽  
Pramila Rijal ◽  
Rolle Rahikainen ◽  
Anthony H. Keeble ◽  
Lisa Schimanski ◽  
...  

AbstractThere is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document