integrative modeling
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 49)

H-INDEX

27
(FIVE YEARS 7)

Author(s):  
David Yates ◽  
Vishal K. Mehta ◽  
Annette Huber-Lee ◽  
Alyssa McCluskey ◽  
David Purkey

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1183
Author(s):  
Satwik Pasani ◽  
Shruthi Viswanath

Integrative modeling of macromolecular assemblies requires stochastic sampling, for example, via MCMC (Markov Chain Monte Carlo), since exhaustively enumerating all structural degrees of freedom is infeasible. MCMC-based methods usually require tuning several parameters, such as the move sizes for coarse-grained beads and rigid bodies, for sampling to be efficient and accurate. Currently, these parameters are tuned manually. To automate this process, we developed a general heuristic for derivative-free, global, stochastic, parallel, multiobjective optimization, termed StOP (Stochastic Optimization of Parameters) and applied it to optimize sampling-related parameters for the Integrative Modeling Platform (IMP). Given an integrative modeling setup, list of parameters to optimize, their domains, metrics that they influence, and the target ranges of these metrics, StOP produces the optimal values of these parameters. StOP is adaptable to the available computing capacity and converges quickly, allowing for the simultaneous optimization of a large number of parameters. However, it is not efficient at high dimensions and not guaranteed to find optima in complex landscapes. We demonstrate its performance on several examples of random functions, as well as on two integrative modeling examples, showing that StOP enhances the efficiency of sampling the posterior distribution, resulting in more good-scoring models and better sampling precision.


2021 ◽  
Vol 118 (45) ◽  
pp. e2105646118
Author(s):  
Martin Schrimpf ◽  
Idan Asher Blank ◽  
Greta Tuckute ◽  
Carina Kauf ◽  
Eghbal A. Hosseini ◽  
...  

The neuroscience of perception has recently been revolutionized with an integrative modeling approach in which computation, brain function, and behavior are linked across many datasets and many computational models. By revealing trends across models, this approach yields novel insights into cognitive and neural mechanisms in the target domain. We here present a systematic study taking this approach to higher-level cognition: human language processing, our species’ signature cognitive skill. We find that the most powerful “transformer” models predict nearly 100% of explainable variance in neural responses to sentences and generalize across different datasets and imaging modalities (functional MRI and electrocorticography). Models’ neural fits (“brain score”) and fits to behavioral responses are both strongly correlated with model accuracy on the next-word prediction task (but not other language tasks). Model architecture appears to substantially contribute to neural fit. These results provide computationally explicit evidence that predictive processing fundamentally shapes the language comprehension mechanisms in the human brain.


2021 ◽  
Vol 118 (34) ◽  
pp. e2103554118
Author(s):  
Moriya Slavin ◽  
Joanna Zamel ◽  
Keren Zohar ◽  
Tsiona Eliyahu ◽  
Merav Braitbard ◽  
...  

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and nucleocapsid (N) proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and obtained cross-link sets with an average density of one cross-link per 20 residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites and suggests a role for Nsp2 in zinc regulation within the replication–transcription complex. For the N protein, we identified multiple intra- and interdomain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryogenic electron microscopy structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.


2021 ◽  
pp. 100132
Author(s):  
Robyn M. Kaake ◽  
Ignacia Echeverria ◽  
Seung Joong Kim ◽  
John Von Dollen ◽  
Nicholas M. Chesarino ◽  
...  

Author(s):  
Reika Masuda ◽  
Samantha Lodge ◽  
Philipp Nitschke ◽  
Manfred Spraul ◽  
Hartmut Schaefer ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2 (2) ◽  
pp. 100483
Author(s):  
A. Gordon Robertson ◽  
Christina Yau ◽  
Jian Carrot-Zhang ◽  
Jeffrey S. Damrauer ◽  
Theo A. Knijnenburg ◽  
...  

2021 ◽  
Author(s):  
Moriya Slavin ◽  
Joanna Zamel ◽  
Keren Zohar ◽  
Siona Eliyahu ◽  
Merav Braitbard ◽  
...  

AbstractAtomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and Nucleocapsid (N) proteins from SARS-CoV-2, and obtained cross-link sets with an average density of one cross-link per twenty residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites, and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and inter-domain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryo-EM structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.


Sign in / Sign up

Export Citation Format

Share Document