scholarly journals Mechanisms that ensure speed and fidelity in eukaryotic translation termination

Science ◽  
2021 ◽  
Vol 373 (6557) ◽  
pp. 876-882 ◽  
Author(s):  
Michael R. Lawson ◽  
Laura N. Lessen ◽  
Jinfan Wang ◽  
Arjun Prabhakar ◽  
Nicholas C. Corsepius ◽  
...  
2021 ◽  
Vol 9 (5) ◽  
pp. 1058
Author(s):  
Antonia María Romero ◽  
María Teresa Martínez-Pastor ◽  
Sergi Puig

Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.


2019 ◽  
Vol 47 (21) ◽  
pp. 11326-11343 ◽  
Author(s):  
Kristýna Poncová ◽  
Susan Wagner ◽  
Myrte Esmeralda Jansen ◽  
Petra Beznosková ◽  
Stanislava Gunišová ◽  
...  

Abstract Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.


2008 ◽  
Vol 30 (5) ◽  
pp. 599-609 ◽  
Author(s):  
Hua Fan-Minogue ◽  
Ming Du ◽  
Andrey V. Pisarev ◽  
Adam K. Kallmeyer ◽  
Joe Salas-Marco ◽  
...  

2013 ◽  
Vol 91 (3) ◽  
pp. 155-164 ◽  
Author(s):  
Lijun Xu ◽  
Yanrong Hao ◽  
Cui Li ◽  
Quan Shen ◽  
Baofeng Chai ◽  
...  

One factor involved in eukaryotic translation termination is class 1 release factor in eukaryotes (eRF1), which functions to decode stop codons. Variant code species, such as ciliates, frequently exhibit altered stop codon recognition. Studies revealed that some class-specific residues in the eRF1 N-terminal domain are responsible for stop codon reassignment in ciliates. Here, we investigated the effects on stop codon recognition of chimeric eRF1s containing the N-terminal domain of Euplotes octocarinatus and Blepharisma japonicum eRF1 fused to Saccharomyces cerevisiae M and C domains using dual luciferase read-through assays. Mutation of class-specific residues in different eRF1 classes was also studied to identify key residues and motifs involved in stop codon decoding. As expected, our results demonstrate that 3 pockets within the eRF1 N-terminal domain were involved in decoding stop codon nucleotides. However, allocation of residues to each pocket was revalued. Our data suggest that hydrophobic and class-specific surface residues participate in different functions: modulation of pocket conformation and interaction with stop codon nucleotides, respectively. Residues conserved across all eRF1s determine the relative orientation of the 3 pockets according to stop codon nucleotides. However, quantitative analysis of variant ciliate and yeast eRF1 point mutants did not reveal any correlation between evolutionary conservation of class-specific residues and termination-related functional specificity and was limited in elucidating a detailed mechanism for ciliate stop codon reassignment. Thus, based on isolation of suppressor tRNAs from Euplotes and Tetrahymena, we propose that stop codon reassignment in ciliates may be controlled by cooperation between eRF1 and suppressor tRNAs.


2004 ◽  
Vol 24 (17) ◽  
pp. 7769-7778 ◽  
Author(s):  
Joe Salas-Marco ◽  
David M. Bedwell

ABSTRACT Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3. eRF1 recognizes each of the three stop codons (UAG, UAA, and UGA) and facilitates release of the nascent polypeptide chain. eRF3 is a GTPase that stimulates the translation termination process by a poorly characterized mechanism. In this study, we examined the functional importance of GTP hydrolysis by eRF3 in Saccharomyces cerevisiae. We found that mutations that reduced the rate of GTP hydrolysis also reduced the efficiency of translation termination at some termination signals but not others. As much as a 17-fold decrease in the termination efficiency was observed at some tetranucleotide termination signals (characterized by the stop codon and the first following nucleotide), while no effect was observed at other termination signals. To determine whether this stop signal-dependent decrease in the efficiency of translation termination was due to a defect in either eRF1 or eRF3 recycling, we reduced the level of eRF1 or eRF3 in cells by expressing them individually from the CUP1 promoter. We found that the limitation of either factor resulted in a general decrease in the efficiency of translation termination rather than a decrease at a subset of termination signals as observed with the eRF3 GTPase mutants. We also found that overproduction of eRF1 was unable to increase the efficiency of translation termination at any termination signals. Together, these results suggest that the GTPase activity of eRF3 is required to couple the recognition of translation termination signals by eRF1 to efficient polypeptide chain release.


Sign in / Sign up

Export Citation Format

Share Document