scholarly journals Thinking through acidic Ca2+ stores

2018 ◽  
Vol 11 (558) ◽  
pp. eaau3342
Author(s):  
Sandip Patel ◽  
Eugen Brailoiu

Glutamate signaling regulates neuronal activity and synaptic plasticity, which underlies learning and memory. In this issue of Science Signaling, Foster et al. found that metabotropic glutamate receptors mediate long-term potentiation in hippocampal neurons by mobilizing acidic endolysosomal Ca2+ stores through the intracellular messenger NAADP.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ananya Dasgupta ◽  
Yu Jia Lim ◽  
Krishna Kumar ◽  
Nimmi Baby ◽  
Ka Lam Karen Pang ◽  
...  

Metabotropic glutamate receptors (mGluRs) play an important role in synaptic plasticity and memory and are largely classified based on amino acid sequence homology and pharmacological properties. Among group III metabotropic glutamate receptors, mGluR7 and mGluR4 show high relative expression in the rat hippocampal area CA2. Group III metabotropic glutamate receptors are known to down-regulate cAMP-dependent signaling pathways via the activation of Gi/o proteins. Here, we provide evidence that inhibition of group III mGluRs by specific antagonists permits an NMDA receptor- and protein synthesis-dependent long-lasting synaptic potentiation in the apparently long-term potentiation (LTP)-resistant Schaffer collateral (SC)-CA2 synapses. Moreover, long-lasting potentiation of these synapses transforms a transient synaptic potentiation of the entorhinal cortical (EC)-CA2 synapses into a stable long-lasting LTP, in accordance with the synaptic tagging/capture hypothesis (STC). Furthermore, this study also sheds light on the role of ERK/MAPK protein signaling and the downregulation of STEP protein in the group III mGluR inhibition-mediated plasticity in the hippocampal CA2 region, identifying them as critical molecular players. Thus, the regulation of group III mGluRs provides a conducive environment for the SC-CA2 synapses to respond to events that could lead to activity-dependent synaptic plasticity.


2019 ◽  
Vol 400 (9) ◽  
pp. 1129-1139 ◽  
Author(s):  
Iryna Hlushchenko ◽  
Pirta Hotulainen

Abstract Synaptic plasticity underlies central brain functions, such as learning. Ca2+ signaling is involved in both strengthening and weakening of synapses, but it is still unclear how one signal molecule can induce two opposite outcomes. By identifying molecules, which can distinguish between signaling leading to weakening or strengthening, we can improve our understanding of how synaptic plasticity is regulated. Here, we tested gelsolin’s response to the induction of chemical long-term potentiation (cLTP) or long-term depression (cLTD) in cultured rat hippocampal neurons. We show that gelsolin relocates from the dendritic shaft to dendritic spines upon cLTD induction while it did not show any relocalization upon cLTP induction. Dendritic spines are small actin-rich protrusions on dendrites, where LTD/LTP-responsive excitatory synapses are located. We propose that the LTD-induced modest – but relatively long-lasting – elevation of Ca2+ concentration increases the affinity of gelsolin to F-actin. As F-actin is enriched in dendritic spines, it is probable that increased affinity to F-actin induces the relocalization of gelsolin.


1995 ◽  
Vol 74 (3) ◽  
pp. 1075-1082 ◽  
Author(s):  
D. K. Selig ◽  
H. K. Lee ◽  
M. F. Bear ◽  
R. C. Malenka

1. We examined the effects of the metabotropic glutamate receptor (mGluR) antagonist alpha-methyl-4-carboxyphenylglycine (MCPG) on the induction of long-term potentiation (LTP) long-term depression (LTD), and depotentiation in CA1 hippocampal neurons using extracellular recording techniques. 2. MCPG (500 microM) strongly antagonized the presynaptic inhibitory action of the mGluR agonist 1-aminocyclopentane-(1S,3R)-dicarboxylic acid yet failed to block LTP induced with either tetanic stimulation (100 Hz, 1 s) or theta-burst stimulation. 3. To test the possibility that our failure to block LTP was due to prior activation of a "molecular switch" that in its "on" state obviates the need for mGluR activation to generate LTP, we gave repeated periods of prolonged low-frequency stimulation (LFS; 1 Hz, 10 min), a manipulation reported to turn the switch "off." Although this stimulation saturated LTD, subsequent application of MCPG still failed to block LTP. 4. MCPG did not block LFS-induced depotentiation in older slices (4-6 wk) or LFS-induced LTD in older, young (11-18 days), or neonatal (3-7 days) slices. 5. These results demonstrate that MCPG-sensitive mGluRs are not necessary for the induction of LTP, LTD, or depotentiation in hippocampal CA1 pyramidal cells. The possibility remains, however, that their activation may modify the threshold for the induction of these long-term plastic changes.


Nature ◽  
1994 ◽  
Vol 368 (6473) ◽  
pp. 740-743 ◽  
Author(s):  
Z. A. Bortolotto ◽  
Z. I. Bashir ◽  
C. H. Davies ◽  
G. L. Collingridge

2014 ◽  
Vol 369 (1633) ◽  
pp. 20130133 ◽  
Author(s):  
Elizabeth Nicholson ◽  
Dimitri M. Kullmann

Several types of hippocampal interneurons exhibit a form of long-term potentiation (LTP) that depends on Ca 2+ -permeable AMPA receptors and group I metabotropic glutamate receptors. Several sources of evidence point to a presynaptic locus of LTP maintenance. The retrograde factor that triggers the expression of LTP remains unidentified. Here, we show that trains of action potentials in putative oriens-lacunosum-moleculare interneurons of the mouse CA1 region can induce long-lasting potentiation of stimulus-evoked excitatory postsynaptic currents that mimics LTP elicited by high-frequency afferent stimulation. We further report that blockers of nitric oxide production or TRPV1 receptors failed to prevent LTP induction. The present results add to the evidence that retrograde signalling underlies N -methyl- d -aspartate (NMDA) receptor-independent LTP in oriens interneurons, mediated by an unidentified factor.


Sign in / Sign up

Export Citation Format

Share Document