scholarly journals Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome

2018 ◽  
Vol 10 (460) ◽  
pp. eaat7163 ◽  
Author(s):  
Paul H. Kim ◽  
Jennings Luu ◽  
Patrick Heizer ◽  
Yiping Tu ◽  
Thomas A. Weston ◽  
...  

Hutchinson-Gilford progeria syndrome is a disorder of premature aging in children caused by de novo mutations in LMNA that lead to the synthesis of an internally truncated form of prelamin A (commonly called progerin). The production of progerin causes multiple disease phenotypes, including an unusual vascular phenotype characterized by the loss of smooth muscle cells in the arterial media and fibrosis of the adventitia. We show that progerin expression, combined with mechanical stress, promotes smooth muscle cell death. Disrupting the linker of the nucleoskeleton and cytoskeleton (LINC) complex in smooth muscle cells ameliorates the toxic effects of progerin on smooth muscle cells and limits the accompanying adventitial fibrosis.

2021 ◽  
Author(s):  
Patricia R. Pitrez ◽  
Lino Ferreira

Abstract Here we describe a protocol for the generation of SMCs from Hutchinson-Gilford Progeria Syndrome (HGPS)- induced pluripotent stem cells (iPSCs) and wild type iPSCs to study their vulnerability.


Author(s):  
Xuran Chu ◽  
Negah Ahmadvand ◽  
Jin-San Zhang ◽  
Werner Seeger ◽  
Saverio Bellusci ◽  
...  

Vascular remodeling is a prominent feature of pulmonary hypertension. This process involves increased muscularization of already muscularized vessels as well as neo-muscularization of non-muscularized vessels. The cell-of-origin of the newly formed vascular smooth muscle cells has been a subject of intense debate in recent years. Identifying these cells may have important clinical implications since it opens the door for attempts to therapeutically target the progenitor cells and/or reverse the differentiation of their progeny. In this context, the dominant model is that these cells derive from pre-existing smooth muscle cells that are activated in response to injury. In this mini review, we present the evidence that is in favor of this model and, at the same time, highlight other studies indicating that there are alternative cellular sources of vascular smooth muscle cells in pulmonary vascular remodeling.


2021 ◽  
Author(s):  
Yin Chen ◽  
Peng Gao ◽  
Lu Huang ◽  
Xing Tan ◽  
Ningling Zhou ◽  
...  

Abstract Vascular stent is viewed as one of the greatest advancements in interventional cardiology. However, current approved stents suffer from in-stent restenosis associated with neointimal hyperplasia or stent thrombosis. To address this issue, we developed an endothelium-like (EL) dressing for vascular stents inspired by the importance and biological functions of native endothelium for cardiovascular system. Our EL dressing is based on a de novo designed hydrogel that is mechanically tough and could preserve integrity on stents during angioplasty. Due to its physiochemical similarities to subendothelial extracellular matrix, the EL dressing facilitated the adhesion and growth of endothelial cells. Besides, it is non-thrombotic and capable of inhibiting smooth muscle cells thanks to the capacity to catalyze nitric oxide generation. Transcriptome analysis further unraveled the EL dressing could modulate the inflammatory response and induce the relaxation of smooth muscle cells, while potentially promoting angiogenesis by stimulating the expression of angiogenic factors. In vivo study demonstrated vascular stents encapsulated by it promoted rapid restoration of native endothelium and persistently suppressed in-stent restenosis in both leporine and swine models. We expect such EL dressing will open a new avenue to the surface engineering of vascular implants for better clinical outcomes.


2020 ◽  
Vol 130 (3) ◽  
pp. 1096-1098 ◽  
Author(s):  
Maarten Hulsmans ◽  
Matthias Nahrendorf

2021 ◽  
Vol 15 ◽  
Author(s):  
Mekha Rajeev ◽  
Chameli Ratan ◽  
Karthik Krishnan ◽  
Meenu Vijayan

Background: Hutchinson–Gilford progeria syndrome (HGPS) also known as progeria of childhood or progeria is a rare, rapid, autosomal dominant genetic disorder characterized by premature aging which occurs shortly after birth. HGPS occurs as a result of de novo point mutation in the gene recognized as LMNA gene that encodes two proteins Lamin A protein and Lamin C protein which are the structural components of the nuclear envelope. Mutations in the gene trigger abnormal splicing and induce internal deletion of 50 amino acids leading to the development of a truncated form of Lamin A protein known as Progerin. Progerin generation can be considered as the crucial step in HGPS since the protein is highly toxic to human cells, permanently farnesylated, and exhibits variation in several biochemical and structural properties within the individual. HGPS also produces complications such as skin alterations, growth failure, atherosclerosis, hair and fat loss, and bone and joint diseases. We have also revised all relevant patents relating to Hutchinson-gilford progeria syndrome and its therapy in the current article. Method: The goal of the present review article is to provide information about Hutchinson–Gilford progeria syndrome (HGPS) and the use of CRISPR/Cas technology as a promising treatment approach in the treatment of the disease. The review also discusses about different pharmacological and non-pharmacological methods of treatment currently used for HGPS. Results : The main limitation associated with progeria is the lack of a definitive cure. The existing treatment modality provides only symptomatic relief. Therefore, it is high time to develop a therapeutic method that hastens premature aging in such patients. Conclusion: CRISPR/Cas technology is a novel gene-editing tool that allows genome editing at specific loci, and is found to be a promising therapeutic approach for the treatment of genetic disorders such as HGPS where dominant-negative mutations take place.


2017 ◽  
Vol 45 (6) ◽  
pp. 1279-1293 ◽  
Author(s):  
Charlotte Strandgren ◽  
Gwladys Revêchon ◽  
Agustín Sola Carvajal ◽  
Maria Eriksson

Hutchinson-Gilford progeria syndrome (HGPS, progeria) is an extremely rare premature aging disorder affecting children, with a disease incidence of ∼1 in 18 million individuals. HGPS is usually caused by a de novo point mutation in exon 11 of the LMNA gene (c.1824C>T, p.G608G), resulting in the increased usage of a cryptic splice site and production of a truncated unprocessed lamin A protein named progerin. Since the genetic cause for HGPS was published in 2003, numerous potential treatment options have rapidly emerged. Strategies to interfere with the post-translational processing of lamin A, to enhance progerin clearance, or directly target the HGPS mutation to reduce the progerin-producing alternative splicing of the LMNA gene have been developed. Here, we give an up-to-date resume of the contributions made by our and other research groups to the growing list of different candidate treatment strategies that have been tested, both in vitro, in vivo in mouse models for HGPS and in clinical trials in HGPS patients.


2021 ◽  
Vol 22 (14) ◽  
pp. 7474
Author(s):  
Rouven Arnold ◽  
Elena Vehns ◽  
Hannah Randl ◽  
Karima Djabali

Hutchinson–Gilford progeria syndrome (HGPS) is an ultra-rare multisystem premature aging disorder that leads to early death (mean age of 14.7 years) due to myocardial infarction or stroke. Most cases have a de novo point mutation at position G608G within exon 11 of the LMNA gene. This mutation leads to the production of a permanently farnesylated truncated prelamin A protein called “progerin” that is toxic to the cells. Recently, farnesyltransferase inhibitor (FTI) lonafarnib has been approved by the FDA for the treatment of patients with HGPS. While lonafarnib treatment irrefutably ameliorates HGPS disease, it is however not a cure. FTI has been shown to cause several cellular side effects, including genomic instability as well as binucleated and donut-shaped nuclei. We report that, in addition to these cellular stresses, FTI caused an increased frequency of cytosolic DNA fragment formation. These extranuclear DNA fragments colocalized with cGAs and activated the cGAS-STING-STAT1 signaling axis, upregulating the expression of proinflammatory cytokines in FTI-treated human HGPS fibroblasts. Treatment with lonafarnib and baricitinib, a JAK-STAT inhibitor, not only prevented the activation of the cGAS STING-STAT1 pathway, but also improved the overall HGPS cellular homeostasis. These ameliorations included progerin levels, nuclear shape, proteostasis, cellular ATP, proliferation, and the reduction of cellular inflammation and senescence. Thus, we suggest that combining lonafarnib with baricitinib might provide an opportunity to reduce FTI cellular toxicity and ameliorate HGPS symptoms further than lonafarnib alone.


Sign in / Sign up

Export Citation Format

Share Document