PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease

2021 ◽  
Vol 13 (604) ◽  
pp. eaax8891
Author(s):  
Areum Jo ◽  
Yunjong Lee ◽  
Tae-In Kam ◽  
Sung-Ung Kang ◽  
Stewart Neifert ◽  
...  

Accumulation of the parkin-interacting substrate (PARIS; ZNF746), due to inactivation of parkin, contributes to Parkinson’s disease (PD) through repression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α; PPARGC1A) activity. Here, we identify farnesol as an inhibitor of PARIS. Farnesol promoted the farnesylation of PARIS, preventing its repression of PGC-1α via decreasing PARIS occupancy on the PPARGC1A promoter. Farnesol prevented dopaminergic neuronal loss and behavioral deficits via farnesylation of PARIS in PARIS transgenic mice, ventral midbrain transduction of AAV-PARIS, adult conditional parkin KO mice, and the α-synuclein preformed fibril model of sporadic PD. PARIS farnesylation is decreased in the substantia nigra of patients with PD, suggesting that reduced farnesylation of PARIS may play a role in PD. Thus, farnesol may be beneficial in the treatment of PD by enhancing the farnesylation of PARIS and restoring PGC-1α activity.

2007 ◽  
Vol 50 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Rieko Setsuie ◽  
Yu-Lai Wang ◽  
Hideki Mochizuki ◽  
Hitoshi Osaka ◽  
Hideki Hayakawa ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Areum Jo ◽  
Yunjong Lee ◽  
Chi-Hu Park ◽  
Joo-Ho Shin

The inactivation of parkin by mutation or post-translational modification contributes to dopaminergic neuronal death in Parkinson’s disease (PD). The substrates of parkin, FBP1 and AIMP2, are accumulated in the postmortem brains of PD patients, and it was recently suggested that these parkin substrates transcriptionally activate deubiquitinase USP29. Herein, we newly identified 160 kDa myb-binding protein (MYBBP1A) as a novel substrate of USP29. Knockdown of parkin increased the level of AIMP2, leading to ultimately USP29 and MYBBP1A accumulation in SH-SY5Y cells. Notably, MYBBP1A was downregulated in the ventral midbrain (VM) of Aimp2 knockdown mice, whereas the upregulation of MYBBP1A was observed in the VM of inducible AIMP2 transgenic mice, as well as in the substantia nigra of sporadic PD patients. These results suggest that AIMP2 upregulates USP29 and MYBBP1A in the absence of parkin activity, contributing to PD pathogenesis.


PPAR Research ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dedeepya Uppalapati ◽  
Nihar R. Das ◽  
Rahul P. Gangwal ◽  
Mangesh V. Damre ◽  
Abhay T. Sangamwar ◽  
...  

Parkinson’s disease (PD) is a common neurodegenerative disorder affecting 1% of the population by the age of 65 years and 4-5% of the population by the age of 85 years. PD affects functional capabilities of the patient by producing motor symptoms and nonmotor symptoms. Apart from this, it is also associated with a higher risk of cognitive impairment that may lead to memory loss, confusion, and decreased attention span. In this study, we have investigated the effect of fenofibrate, a PPAR-αagonist in cognitive impairment model in PD. Bilateral intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100 µg/1 µL/side) produced significant cognitive dysfunctions. Fenofibrate treatment at 10, 30, and 100 mg/kg for twenty-five days was found to be neuroprotective and improved cognitive impairment in MPTP-induced PD model as evident from behavioral, biochemical (MDA, GSH, TNF-α, and IL-6), immunohistochemistry (TH), and DNA fragmentation (TUNEL positive cells) studies. Further, physiologically based pharmacokinetic (PBPK) modeling study was performed using GastroPlus to characterize the kinetics of fenofibric acid in the brain. A good agreement was found between pharmacokinetic parameters obtained from the actual and simulated plasma concentration-time profiles of fenofibric acid. Results of this study suggest that PPAR-αagonist (fenofibrate) is neuroprotective in PD-induced cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document