Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson’s Disease

Author(s):  
Fillipe Mendes De Araújo ◽  
Annyta Fernandes Frota ◽  
Lívia Bacelar de Jesus ◽  
Ticiane Caribe Macedo ◽  
Lorena Cuenca-Bermejo ◽  
...  
2007 ◽  
Vol 50 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Rieko Setsuie ◽  
Yu-Lai Wang ◽  
Hideki Mochizuki ◽  
Hitoshi Osaka ◽  
Hideki Hayakawa ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 5981
Author(s):  
Ola Wasel ◽  
Jennifer L. Freeman

The zebrafish (Danio rerio) is routinely used in biological studies as a vertebrate model system that provides unique strengths allowing applications in studies of neurodevelopmental and neurodegenerative diseases. One specific advantage is that the neurotransmitter systems are highly conserved throughout vertebrate evolution, including between zebrafish and humans. Disruption of the dopaminergic signaling pathway is linked to multiple neurological disorders. One of the most common is Parkinson’s disease, a neurodegenerative disease associated with the loss of dopaminergic neurons, among other neuropathological characteristics. In this review, the development of the zebrafish’s dopaminergic system, focusing on genetic control of the dopaminergic system, is detailed. Second, neurotoxicant models used to study dopaminergic neuronal loss, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the pesticides paraquat and rotenone, and 6-hydroxydopamine (6-OHDA), are described. Next, zebrafish genetic knockdown models of dj1, pink1, and prkn established for investigating mechanisms of Parkinson’s disease are discussed. Chemical modulators of the dopaminergic system are also highlighted to showcase the applicability of the zebrafish to identify mechanisms and treatments for neurodegenerative diseases such as Parkinson’s disease associated with the dopaminergic system.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Young Cheul Chung ◽  
Yoon-Seong Kim ◽  
Eugene Bok ◽  
Tae Young Yune ◽  
Sungho Maeng ◽  
...  

The present study examined whether matrix metalloproteinase-3 (MMP-3) participates in the loss of dopaminergic (DA) neurons in the nigrostriatal pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease with blood brain barrier (BBB) damage and infiltration of peripheral immune cells. Tyrosine hydroxylase (TH) immunostaining of brain sections from MPTP-treated mice showed that MPTP induced significant degeneration of nigrostriatal DA neurons. Moreover, FITC-labeled albumin detection and immunostaining revealed that MPTP caused damage to the BBB and increased the number of ED-1- and CD-3-immunopositive cells in the substantia nigra (SN). Genetic ablation of MMP-3 reduced the nigrostriatal DA neuron loss and improved motor function. This neuroprotective effect afforded by MMP-3 deletion was associated with the suppression of BBB disruption and a decrease in the number of ED-1- and CD-3-immunopositive cells in the SN. These data suggest that MMP-3 could play a crucial role in neurodegenerative diseases such as PD in which BBB damage and neuroinflammation are implicated.


PLoS ONE ◽  
2009 ◽  
Vol 4 (9) ◽  
pp. e7247 ◽  
Author(s):  
Kyota Fujita ◽  
Toshihiro Seike ◽  
Noriko Yutsudo ◽  
Mizuki Ohno ◽  
Hidetaka Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document