scholarly journals Effects of water-level fluctuations on the environmental characteristics and fish-environment relationships in the littoral zone of a reservoir

2016 ◽  
Vol 189 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Maxime Logez ◽  
Romain Roy ◽  
Laurence Tissot ◽  
Christine Argillier
2011 ◽  
Vol 9 (4) ◽  
pp. 815-824 ◽  
Author(s):  
Rodrigo Moncayo-Estrada ◽  
Carlos Escalera-Gallardo ◽  
Owen T. Lind

This study addresses the influence of water-level fluctuations on fish distribution at two temporal scales: seasonal (dry and rainy) and interannual (low and high volume conditions). The analysis of abundance relationships among three zooplanktivore Chirostoma species at fifteen sites in Lake Chapala, Mexico, revealed the significant influence of contrasting conditions (P=0.0002). Seasonally, segregation was more related to species dominance in the dry season and exclusively related to environmental characteristics in the rainy season. Interanually, biotic influence occurred in the shallowest and the deepest episodes of the lake. Environmental characteristics influenced species distribution when the lake reached 25% of its volume. Site, depth, temperature, and salinity were the leading factors influencing fish distribution. These results emphasize the necessity to implement different management strategies according to lake volume, particularly when a critical threshold is reached.


2015 ◽  
Vol 12 (7) ◽  
pp. 5333-5363 ◽  
Author(s):  
M. Yang ◽  
X. M. Geng ◽  
J. Grace ◽  
Y. F. Jia ◽  
Y. Z. Liu ◽  
...  

Abstract. There have been only a few studies that allow us to estimate the contribution of newly-created reservoirs to greenhouse gas budgets. In particular, information is limited for understanding the spatiotemporal variation of N2O flux and the underlying mechanisms in the littoral zone where complex biochemical processes are induced by water level fluctuations. A study was carried out at five different water levels (deep water area, shallow water area, seasonally flooded area, control site for seasonally flooded area and non-flooded area) at the littoral zone of a temperate reservoir using the static chamber technique. Seasonal and spatial variations of N2O flux and environmental factors were monitored throughout the growing season including a flood event during summer rains. The N2O flux ranged from −2.29 to 182.47 μg m−2 h−1. Non-flooded dry land emitted more N2O than flooded land, no matter whether it was permanently or seasonally flooded. However, no significant difference was observed between seasonally flooded sites and their control sites. Wind speed, air temperature, soil water content, dissolved oxygen in water and soil nitrate influenced N2O flux significantly. In order to know the contrasting characteristics of N2O and CH4 fluxes in the littoral zone of the reservoir, results were compared with a previous study on CH4 emission carried out at the same sites and time with comparable methods. It showed that N2O flux and CH4 flux was influenced by distinct factors and in differing ways. This work highlights the complexity of N2O flux at the littoral zone. The different response ways of N2O and CH4 to environments implies the big challenge of greenhouse gas emission control through ecosystem management.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


Sign in / Sign up

Export Citation Format

Share Document