lake volume
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 38)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Qi Liang ◽  
Wanxin Xiao ◽  
Ian Howat ◽  
Xiao Cheng ◽  
Fengming Hui ◽  
...  

Abstract. The generation, transport, storage and drainage of meltwater beneath the ice sheet play important roles in the Greenland ice sheet (GrIS) system. Active subglacial lakes, common features in Antarctica, have recently been detected beneath GrIS and may impact ice sheet hydrology. Despite their potential importance, few repeat subglacial lake filling and drainage events have been identified under Greenland Ice Sheet. Here we examine the surface elevation change of a collapse basin at the Flade Isblink ice cap, northeast Greenland, which formed due to sudden subglacial lake drainage in 2011. We estimate the subglacial lake volume evolution using multi-temporal ArcticDEM data and ICESat-2 altimetry data acquired between 2012 and 2021. Our long-term observations show that the subglacial lake was continuously filled by surface meltwater, with basin surface rising by up to 55 m during 2012–2021 and we estimate 138.2 × 106 m3 of meltwater was transported into the subglacial lake between 2012 and 2017. A second rapid drainage event occurred in late August 2019, which induced an abrupt ice dynamic response. Comparison between the two drainage events shows that the 2019 drainage released much less water than the 2011 event. We conclude that multiple factors, e.g., the volume of water stored in the subglacial lake and bedrock relief, regulate the episodic filling and drainage of the lake. By comparing the surface meltwater production and the subglacial lake volume change, we find only ~64 % of the surface meltwater successfully descended to the bed, suggesting potential processes such as meltwater refreezing and firn aquifer storage, need to be further quantified.


2022 ◽  
Author(s):  
Thierry A. Pellegrinetti ◽  
Simone R. Cotta ◽  
Hugo Sarmento ◽  
Juliana S. Costa ◽  
Endrews Delbaje ◽  
...  

Abstract Soda lakes environment is known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effect of different environmental conditions of six adjacent soda lakes on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes in three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, that was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were linked to high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and less stressed lake conditions. Stress response metabolism was overrepresented in ET and OT lakes and underrepresented in CVO lakes. Altogether, this study illustrated the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. A. Niederman ◽  
D. F. Porinchu ◽  
B. S. Kotlia

AbstractHigh-resolution analysis of a 3.80 m sediment core recovered from Deoria Tal, a mid-elevation lake located at 2393 m a.s.l. in the Garhwal Himalaya, documents long-term and abrupt hydroclimate fluctuations in northern India during the mid- to late Holocene. The sediment chronology, based on ten 14C dates, indicates the core spans 5200 years. Non-destructive, radiological imaging approaches (X-ray fluorescence (XRF), X-ray imaging, and CT scans) were used to assess the response of the lake system to changing hydroclimatic conditions. Variations in elemental concentrations and sediment density evidenced notable hydroclimate change episodes centered at 4850, 4200, and 3100 cal yr BP. Elevated detrital input, greater sediment density, decreased lake ventilation, and lower autochthonous productivity reflects lake deepening between 4350 and 4200 cal yr BP. An abrupt shift in elemental concentrations and sediment density indicated the onset of lake drawdown at 4200 cal yr BP and a negative hydroclimate anomaly between 4200 and 4050 cal yr BP. Lower detrital flux, decreased sediment density, increased oxygenation, and higher autochthonous productivity, reflects a reduction in lake volume between 3200 and 3100 cal yr BP. The potential link between abrupt climate change at 4200 cal yr BP and the contraction of the Indus civilization is explored.


2021 ◽  
Author(s):  
Lingxiao Wang ◽  
Lin Zhao ◽  
Huayun Zhou ◽  
Shibo Liu ◽  
Erji Du ◽  
...  

Abstract. Serling Co lake, surrounded by permafrost and glacier-occupied regions, has exhibited the greatest increase in water storage over the last 50 years among all the lakes on the Tibetan Plateau. However, increases in precipitation and glacial melting are not enough to explain the increased water volume of lake expansion. The magnitude of the contribution of thawing permafrost to this increase under climate warming remains unknown. This study made the first attempt to quantify the water contribution of ground ice melting to the expansion of Serling Co lake by evaluating the ground surface deformation. We monitored the spatial distribution of surface deformation in the Serling Co basin using the SBAS-InSAR technique and compared it with the findings of field surveys. Then, the ground ice meltwater volume in the watershed was calculated based on the long-term deformation rate. Finally, this volume was compared with the lake volume change during the same period, and the contribution ratio was derived. SBAS-InSAR monitoring during 2017–2020 illustrated widespread and large subsidence in the upstream section of the Zhajiazangbu subbasin, where widespread continuous permafrost is present. The terrain subsidence was normally between 5 and 20 mm/a, indicating rapid ground ice loss in the region. The ground ice meltwater reached 56.0 × 106 m3/a, and the rate of increase in lake water storage was 496.3 × 106 m3/a during the same period, with ground ice meltwater contributing 11.3 % of the lake volume increase. This study is especially helpful in explaining the rapid expansion of Serling Co lake and equilibrating the water balance at the watershed scale. More importantly, the proposed method can be easily extended to other watersheds underlain by permafrost and to help understand the hydrologic changes in these watersheds.


2021 ◽  
Vol 15 (11) ◽  
pp. 5133-5150
Author(s):  
Christophe Ogier ◽  
Mauro A. Werder ◽  
Matthias Huss ◽  
Isabelle Kull ◽  
David Hodel ◽  
...  

Abstract. The glacier-dammed Lac des Faverges, located on Glacier de la Plaine Morte (Swiss Alps), has drained annually as a glacier lake outburst flood since 2011. In 2018, the lake volume reached more than 2 × 106 m3, and the resulting flood caused damage to the infrastructure downstream. In 2019, a supraglacial channel was dug to artificially initiate a surface lake drainage, thus limiting the lake water volume and the corresponding hazard. The peak in lake discharge was successfully reduced by over 90 % compared to 2018. We conducted extensive field measurements of the lake-channel system during the 48 d drainage event of 2019 to characterize its hydraulics and thermodynamics. The derived Darcy–Weisbach friction factor, which characterizes the water flow resistance in the channel, ranges from 0.17 to 0.48. This broad range emphasizes the factor's variability and questions the choice of a constant friction factor in glacio-hydrological models. For the Nusselt number, which relates the channel-wall melt to the water temperature, we show that the classic, empirical Dittus–Boelter equation with the standard coefficients does not adequately represent our measurements, and we propose a suitable pair of coefficients to fit our observations. This hints at the need to continue research into how heat transfer at the ice–water interface is described in the context of glacial hydraulics.


2021 ◽  
Author(s):  
Liuming Wang ◽  
Junxiao Wang ◽  
Mengyao Li ◽  
Liping Zhu ◽  
Xingong Li

Abstract. The Tibetan Plateau, known as "the third pole of the Earth", is a region susceptible to climate change. With little human disturbance, lake storage changes serve as a unique indicator of climate change, but comprehensive lake storage data are rare in the region, especially for the lakes with an area less than 10 km2 which are the most sensitive to environmental changes. In this paper, we completed a census of annual lake volume change for 976 lakes larger than 1 km2 in the endorheic basin of the Tibetan Plateau (EBTP) during 1989–2019 using Landsat imagery and digital terrain models. Validation and comparison with several existing studies indicate that our data are more reliable. Lake volume in the EBTP exhibited a net increase of 193.45 km3 during the time period with an increasing rate of 6.45 km3 year−1. In general, the larger the lake area, the greater the lake volume change, though there are some exceptions. Lakes with an area less than 10 km2 have more severe volume change whether decreasing or increasing. This research complements existing lake studies by providing a comprehensive and long-term lake volume change data for the region. The dataset is available on Zenodo (https://doi.org/10.5281/zenodo.5543615, Wang et al., 2021).


2021 ◽  
Vol 11 (20) ◽  
pp. 9463
Author(s):  
Wilfried Hagg ◽  
Stefan Ram ◽  
Alexander Klaus ◽  
Simon Aschauer ◽  
Sinan Babernits ◽  
...  

The frequency of glacier lake outbursts floods (GLOFs) is likely to increase with the ongoing glacier retreat, which produces new glacial lakes and enlarges existing ones. Here, we simulate the outburst of a potentially dangerous glacial lake in Bhutan by applying hydrodynamic modelling. Although the lake volume is known, several parameters connected to the dam breach and the routing of the flood are rough estimates or assumptions, which introduce uncertainties in the results. For this reason, we create an ensemble of nine outburst scenarios. The simulation of magnitude and timing of possible inundation depths is an important asset to prepare emergency action plans. For our case study in the Mo Chu River Basin, the results show that, even under the worst case scenario, little damage to residential buildings can be expected. However, such an outburst flood would probably destroy infrastructure and farmland and might even affect the operation of a hydroelectric powerplant more than 120 km downstream the lake. Our simulation efforts revealed that, by using a 30-m elevation model instead of a 5-m raster, flood magnitude and inundation areas are overestimated significantly, which highly suggests the use of high-resolution terrain data. These results may be a valuable input for risk mitigation efforts.


2021 ◽  
Vol 13 (20) ◽  
pp. 4024
Author(s):  
Fangdi Sun ◽  
Bin He ◽  
Caixia Liu ◽  
Yuchao Zeng

Lakes on the Tibetan Plateau have experienced variations over the last several decades, and the delineation of lake dynamics is favorable for the regional water cycle and can serve as important information for plateau environmental research. This study focused on 57 lakes near the Tanggula Mountains on the southeastern Tibetan Plateau. Yearly inundations of the lakes in 1989–2019 and altimeter data available for 2003–2020 were integrated to illustrate the changing patterns of glacier-fed and non-glacier-fed lakes. These two groups of lakes presented very similar evolution stages. They both increased in 1989–1992, decreased in 1992–1996, increased rapidly in 1998–2005, and had batch-wise fluctuations since 2005, with respective areas of around 5305.28 and 1636.79 km2 in the last decade. The non-glacier-fed lakes were more sensitive to precipitation variation, and glacier-fed lakes were more sensitive to temperature changes. Based on lakes with obvious changes in water level, the whole water storage variations of the studied lakes were 1.90 Gt/y in 2003–2009, including 1.80 Gt/y for glacier-fed lakes and 0.10 Gt/y for non-glacier-fed lakes. The contribution from glacier melting in 2003–2009 amounted to 16.11% of the whole lake volume increase. In 2010–2020, water mass changes were 0.42 Gt/y for glacier-fed lakes and –0.14 Gt/y for non-glacier-fed lakes, respectively. The volume increase of glacier-fed lakes in 2010–2020 was mainly due to the expansion of Selin Co. Selin Co experienced a water increase of about 0.46 Gt/y, and the other glacier-fed lakes experienced a decreasing volume of –0.04 Gt/y. In 2010–2020, 99.43% of the glacier contribution supplied Selin Co.


2021 ◽  
Vol 15 (8) ◽  
pp. 3731-3749
Author(s):  
Eyjólfur Magnússon ◽  
Finnur Pálsson ◽  
Magnús T. Gudmundsson ◽  
Thórdís Högnadóttir ◽  
Cristian Rossi ◽  
...  

Abstract. We present repeated radio-echo sounding (RES, 5 MHz) on a profile grid over the eastern Skaftá cauldron (ESC) in Vatnajökull ice cap, Iceland. The ESC is a ∼ 3 km wide and 50–150 m deep ice cauldron created and maintained by subglacial geothermal activity of ∼ 1 GW. Beneath the cauldron and 200–400 m thick ice, water accumulates in a subglacial lake and is released semi-regularly in jökulhlaups. The RES record consists of annual surveys conducted at the beginning of every summer during the period 2014–2020. Comparison of the RES surveys reveals variable lake area (0.5–4.1 km2) and enables traced reflections from the lake roof to be distinguished from bedrock reflections. This allows construction of a digital elevation model (DEM) of the bedrock in the area, further constrained by two borehole measurements at the cauldron centre. It also allows creation of lake thickness maps and an estimate of lake volume at the time of each survey, which we compare with lowering patterns and released water volumes obtained from pre- and post-jökulhlaup surface DEMs. The estimated lake volume was 250 GL (gigalitres = 106 m3) in June 2015, but 320 ± 20 GL drained from the ESC in October 2015. In June 2018, RES profiles revealed a lake volume of 185 GL, while 220 ± 30 GL were released in a jökulhlaup in August 2018. Considering the water accumulation over the periods between RES surveys and jökulhlaups, this indicates 10 %–20 % uncertainty in the RES-derived volumes at times when significant jökulhlaups may be expected.


2021 ◽  
Vol 13 (14) ◽  
pp. 2701
Author(s):  
Burhan Baha Bilgilioğlu ◽  
Esra Erten ◽  
Nebiye Musaoğlu

As one of the largest hypersaline lakes, Lake Tuz, located in the middle of Turkey, is a key waterbird habitat and is classified as a Special Environmental Protection Area in the country. It is a dynamic lake, highly affected by evaporation due to its wide expanse and shallowness (water depth <40 cm), in addition to being externally exploited by salt companies. Monitoring the dynamics of its changes in volume, which cause ecological problems, is required to protect its saline lake functions. In this context, a spatially homogeneous distributed gauge could be critical for monitoring and rapid response; however, the number of gauge stations and their vicinity is insufficient for the entire lake. The present study focuses on assessing the feasibility of a time-series interferometric technique, namely the small baseline subset (SBAS), for monitoring volume dynamics, based on freely available Sentinel-1 data. A levelling observation was also performed to quantify the accuracy of the SBAS results. Regression analysis between water levels, which is one of the most important volume dynamics, derived by SBAS and levelling in February, April, July and October was 67%, 80%, 84%, and 95% respectively, for correlation in the range of 10–40 cm in water level, and was in line with levelling. Salt lake components such as water, vegetation, moist soil, dry soil, and salt, were also classified with Sentinel-2 multispectral images over time to understand the reliability of the SBAS measurements based on interferometric coherence over different surface types. The findings indicate that the SBAS method with Sentinel-1 is a good alternative for measuring lake volume dynamics, including the monitoring of water level and salt movement, especially for the dry season. Even though the number of coherent, measurable, samples (excluding water) decrease during the wet season, there are always sufficient coherent samples (>0.45) over the lake.


Sign in / Sign up

Export Citation Format

Share Document