scholarly journals Quality control and filling of daily temperature and precipitation time series in Colombia

Author(s):  
Cesar Augusto Terán-Chaves ◽  
Julio Martin Duarte-Carvajalino ◽  
Sonia Mercedes Polo-Murcia
2013 ◽  
Vol 17 (5) ◽  
pp. 1383-1388
Author(s):  
Ya-Nan Guo ◽  
Xiao-Hua Yang ◽  
Xiao-Juan Chen ◽  
Ying Mei ◽  
Chong-Li Di

Air temperature and precipitation variation trends of the upstream of Lancang river using the time series from 1957 to 2011 are evaluated. The Mann-Kendall method is applied to study the trend and climatic jump of the air temperature and precipitation time series. It shows that the temperature has an obvious uptrend with an increase of 0.023?C per year. The annual precipitation of the upstream of Lancang river is 954.96 mm without any change, however, the precipitation is gradually increased from upstream to downstream. This paper is significant for understanding the climate change over the years, and it has practical significance for water resources allocation and management in the future.


2009 ◽  
Vol 1 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Marian Melo ◽  
Milan Lapin ◽  
Ingrid Damborska

Abstract In this paper methods of climate-change scenario projection in Slovakia for the 21st century are outlined. Temperature and precipitation time series of the Hurbanovo Observatory in 1871-2007 (Slovak Hydrometeorological Institute) and data from four global GCMs (GISS 1998, CGCM1, CGCM2, HadCM3) are utilized for the design of climate change scenarios. Selected results of different climate change scenarios (based on different methods) for the region of Slovakia (up to 2100) are presented. The increase in annual mean temperature is about 3°C, though the results are ambiguous in the case of precipitation. These scenarios are required by users in impact studies, mainly from the hydrology, agriculture and forestry sectors.


2009 ◽  
Vol 48 (9) ◽  
pp. 1961-1970 ◽  
Author(s):  
Andreas Muhlbauer ◽  
Peter Spichtinger ◽  
Ulrike Lohmann

Abstract In this study, robust parametric regression methods are applied to temperature and precipitation time series in Switzerland and the trend results are compared with trends from classical least squares (LS) regression and nonparametric approaches. It is found that in individual time series statistically outlying observations are present that influence the LS trend estimate severely. In some cases, these outlying observations lead to an over-/underestimation of the trends or even to a trend masking. In comparison with the classical LS method and standard nonparametric techniques, the use of robust methods yields more reliable trend estimations and outlier detection.


2015 ◽  
Vol 19 (6) ◽  
pp. 2717-2736 ◽  
Author(s):  
A. Kuentz ◽  
T. Mathevet ◽  
J. Gailhard ◽  
B. Hingray

Abstract. Efforts to improve the understanding of past climatic or hydrologic variability have received a great deal of attention in various fields of geosciences such as glaciology, dendrochronology, sedimentology and hydrology. Based on different proxies, each research community produces different kinds of climatic or hydrologic reanalyses at different spatio-temporal scales and resolutions. When considering climate or hydrology, many studies have been devoted to characterising variability, trends or breaks using observed time series representing different regions or climates of the world. However, in hydrology, these studies have usually been limited to short temporal scales (mainly a few decades and more rarely a century) because they require observed time series (which suffer from a limited spatio-temporal density). This paper introduces ANATEM, a method that combines local observations and large-scale climatic information (such as the 20CR Reanalysis) to build long-term probabilistic air temperature and precipitation time series with a high spatio-temporal resolution (1 day and a few km2). ANATEM was tested on the reconstruction of air temperature and precipitation time series of 22 watersheds situated in the Durance River basin, in the French Alps. Based on a multi-criteria and multi-scale diagnosis, the results show that ANATEM improves the performance of classical statistical models – especially concerning spatial homogeneity – while providing an original representation of uncertainties which are conditioned by atmospheric circulation patterns. The ANATEM model has been also evaluated for the regional scale against independent long-term time series and was able to capture regional low-frequency variability over more than a century (1883–2010).


Sign in / Sign up

Export Citation Format

Share Document