Sequence stratigraphic framework and evolution of carbonate platform-basin systems in the Triassic of the Eastern Lombardian Alps

2017 ◽  
Vol 168 (3) ◽  
pp. 341-371 ◽  
Author(s):  
Michael Seeling ◽  
Axel Emmerich ◽  
Thilo Bechstädt ◽  
Rainer Zühlke
1997 ◽  
Vol 16 (1) ◽  
pp. 51-58 ◽  
Author(s):  
R. W. Jones

Abstract. The results of micropalaeontological, nannopalaeontological and palynological analyses of Cenozoic sections from the Northern Sulaiman Ranges in Pakistan are discussed. They are in keeping with previously published results (though in some cases significantly more refined). They enable placement of most of the sampled lithostratigraphic units in a global bio- and sequence-stratigraphic framework. Limestones appear to be associated with essentially transgressive global sequences, shales with essentially regressive sequences. Palaeoenvironmental interpretations indicate a range of depositional settings from continental through shallow marine to basinal. A number of shallow marine carbonate platform sub-environments are recognized over the Palaeocene–Eocene section


2014 ◽  
Vol 484-485 ◽  
pp. 612-615
Author(s):  
Feng Zhu

Based on the integrated study of the outcrops, the seismic, drilling and logging data of Lianglitage formation in central Tarim Basin, the sequence stratigraphic framework of the platform margin is built, and the Lianglitage formation is divided into 3 third-order sequences. The vertical pattern and lateral distribution for carbonate reef-bank reservoir in sequence stratigraphic framework are analyzed. The reef-bank reservoir mainly developed in highstand system tract of sequence Ssq2, and distributed along the carbonate platform margin of the Middle-Late Ordovician in central Tarim Basin. The mudstone mound, organic reef, granule bank are vertically stacked. Laterally, the area of well shun3-shun4-shun2-shun6 are characterized by multiphase bank reservoir overlapping, and the area of well TZ82-TZ44 - TZ161-TZ24 - TZ26 are characterized by multiphase organic reef and bank overlapping. The reef-bank complexes in sequence Ssq2 are the main targets of exploration in central Tarim Basin.


GeoArabia ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 91-156 ◽  
Author(s):  
Bastian Koehrer ◽  
Michael Zeller ◽  
Thomas Aigner ◽  
Michael Poeppelreiter ◽  
Paul Milroy ◽  
...  

ABSTRACT The Middle Permian to Lower Triassic Khuff Formation is one of the most important reservoir intervals in the Middle East. This study presents a sequence stratigraphic analysis of the Khuff Formation of a well-exposed outcrop in the Oman Mountains, which may provide a reference section for correlations across the entire Middle East. On the Saiq Plateau of the Al Jabal al-Akhdar, the Permian Upper Saiq Formation is time-equivalent to the Lower and Middle Khuff Formation (K5–K3 reservoir units in Oman). The Permian section is dominated by graded skeletal and peloidal packstones and cross-bedded grainstones with a diverse marine fauna. The Lower Mahil Member (Induan Stage), time-equivalent to the Upper Khuff Formation (K2–K1 reservoir units in Oman), is dominated by grainstones composed of microbially-coated intra-clasts and ooids. In general, the studied outcrop is characterized by a very high percentage of grain-dominated textures representing storm-dominated shoal to foreshoal deposits of a paleogeographically more distal portion of the Khuff carbonate ramp. A sequence-stratigraphic analysis was carried out by integrating lithostratigraphic marker beds, facies cycles, bio- and chemostratigraphy. The investigated outcrop section was subdivided into six third-order sequences, named KS 6 to KS 1. KS 6–KS 5 are interpreted to correspond to the Murgabian to Midian (ca. Wordian to Capitanian) stages. KS 4-Lower KS 2 correspond to the Dzhulfian (Wuchiapingian) to Dorashamian (Changhsingian) stages. Upper KS 2–KS 1 represent the Triassic Induan stage. Each of the six sequences was further subdivided into fourth-order cycle sets and fifth-order cycles. The documentation of this outcrop may contribute to a better regional understanding of the Khuff Formation on the Arabian Platform.


2017 ◽  
Vol 4 (1) ◽  
pp. 85 ◽  
Author(s):  
Zhipeng Lin ◽  
Le Chen ◽  
Jingfu Shan ◽  
Tan Zhang ◽  
Qianjun Sun ◽  
...  

Currently, the recognition and research on the classification of fluvial types mainly focus on the description and results of a series of indicators, such as the plane shape and sediment characteristics. However, there is limited literacy about how to demonstrate the fluvial types from the depositional process, especially less on sequence model of inland fluvial. Thus, this paper aims o propose a new kind of sequence stratigraphic framework, which is able to reflect the fluvial processes under the perspective of sequence stratigraphy. Accordingly, we use the principle of concrete analysis for concrete problems by comprehensively summing up the previous classification schemes of river types. With the research method of sedimentation process, new fluvial systems tracts for fluvial are presented here, including four parts: low fluvial system tract (LFST), advancing fluvial system tract (AFST), flooding fluvial system tract (FFST), receding fluvial system tract (RFST). Moreover, these could be applied to tackle the problem of the traditional division of fluvial. Various rivers have the different characteristics of systems tracts, then this may play a vital role in the discrimination of meandering river, braided river, anastomosing river and branched river. This study embodies the philosophical thought of Process Sedimentology and may contribute to revealing the deposition process of the fluvial system more profoundly from the aspect of genetic mechanism and evolution course. Most importantly, the fluvial classification system is definitely improved from the description stage to a complete rational stage.


2021 ◽  
pp. SP509-2021-51
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

AbstractImproved seismic data quality in the last 10–15 years, innovative use of seismic attribute combinations, extraction of geomorphological data, and new quantitative techniques, have significantly enhanced understanding of ancient carbonate platforms and processes. 3D data have become a fundamental toolkit for mapping carbonate depositional and diagenetic facies and associated flow units and barriers, giving a unique perspective how their relationships changed through time in response to tectonic, oceanographic and climatic forcing. Sophisticated predictions of lithology and porosity are being made from seismic data in reservoirs with good borehole log and core calibration for detailed integration with structural, paleoenvironmental and sequence stratigraphic interpretations. Geologists can now characterise entire carbonate platform systems and their large-scale evolution in time and space, including systems with few outcrop analogues such as the Lower Cretaceous Central Atlantic “Pre-Salt” carbonates. The papers introduced in this review illustrate opportunities, workflows, and potential pitfalls of modern carbonate seismic interpretation. They demonstrate advances in knowledge of carbonate systems achieved when geologists and geophysicists collaborate and innovate to maximise the value of seismic data from acquisition, through processing to interpretation. Future trends and developments, including machine learning and the significance of the energy transition, are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document