upper miocene
Recently Published Documents


TOTAL DOCUMENTS

800
(FIVE YEARS 115)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 128 (1) ◽  
Author(s):  
STEPHEN J. GODFREY ◽  
ALBERTO COLLARETA ◽  
JOHN R. NANCE

New finds of remarkable coprolites (fossilized feces) are here reported from the famous Miocene marine sediments of the Chesapeake Group exposed along Calvert Cliffs (Maryland, U.S.A.).  Although vertebrate coprolites have been described from these deposits, here we provide the first description of tiny invertebrate fecal pellets. Thus far, these fecal pellets have only been found in the upper Miocene (Tortonian) St. Marys Formation. The micro-coprolites represent the coprulid ichnospecies Coprulus oblongus. The fecal pellets are found in small clusters or strings of dozens to masses of many hundreds. Pellets range in size from approximately 0.4 – 2.0 mm wide by 1.0 – 5.0 mm long, and range in color from gray to brownish black. Their length/diameter ratio is always very nearly 2. These coprulids have been found in a variety of Miocene fossils/concretions including a uranoscopid neurocranium, naticid gastropod, bivalve shells, barnacle tests, and in pellet-backfilled sinuous burrows through sediment. Because the fecal pellets are often found in tiny spaces or spaces thought to be inaccessible to shelled invertebrates, the coprulids are attributed to small and soft-bodied polychaetes or other annelids. Some coprolites attributed to crocodilians from the lower-middle Miocene Calvert Formation were tunneled into, presumably the result of coprophagy, by some unknown kind of organism(s). These compound trace fossils are in the form of burrows that excavate the coprolites, the sides of which are sculptured by scratch/gouge marks.


2022 ◽  
pp. 106077
Author(s):  
M. Poyatos-Moré ◽  
F. García-García ◽  
F.J. Rodríguez-Tovar ◽  
J. Soria ◽  
C. Viseras ◽  
...  

2021 ◽  
Vol 151 (4) ◽  
pp. 329-334
Author(s):  
Alfréd Dulai ◽  
Tamás Henn ◽  
Krisztina Sebe

This paper examines Badenian (middle Miocene) macroinvertebrates – corals and molluscs – from the Pécs-Danitzpuszta sand pit (Mecsek Mts, SW Hungary) in order to extend our knowledge on Miocene normal marine deposits of the Mecsek region. Corals occur reworked in the upper Miocene sand that was deposited in the brackish Lake Pannon, and presumably originate either from the middle Badenian Pécsszabolcs or the upper Badenian Rákos Member of the Lajta Formation. A total of seven taxa were identified. These taxa suggest subtropical conditions and a lack of coral reefs in the Badenian. Molluscs were found in situ in the upper Badenian Szilágy Clay Marl Member of the Baden Formation and the Rákos Member of the Lajta Formation. They dominantly consist of bivalves and represent benthic assemblages typical of the middle Miocene Central Paratethys.


2021 ◽  
Vol 151 (4) ◽  
pp. 411-422
Author(s):  
Krisztina Sebe

The Pécs-Danitzpuszta sand pit in southern Hungary exposes middle and upper Miocene (Badenian to Pannonian/Langhian to Tortonian) sediments along the mountain front fault zone of the Mecsek Mts and preserves an essential record of tectonic events during and after the early late Miocene, which are not exposed elsewhere in the region. In this paper we present structural observations recorded over 20 years of work, date the deformation events with mollusk biostratigraphy and make inferences on the structural evolution of the area. At the beginning of the time interval between 10.2–10.0 Ma, NNW–SSE (to NW–SE) extension created normal faults and negative flower structures. These show that extension-related fault activity lasted here up to the late Miocene. Shortly thereafter, still in the early part of the time interval between 10.2–10.0 Ma, N–S to NNW–SSE compression ensued and dominated the area ever since. Deformations under this stress field included reverse faulting in the Pannonian marls and sands, folding of the whole succession, with bedding-plane slip and shearingelated block rotation in the already deposited middle and upper Miocene marl layers and continuously changing bedding dips and southward thickening layers in the Pannonian sands. Lake level changes of Lake Pannon must have played a role in the formation of an angular unconformity within the sands besides compression. The compressional event can be explained by the Africa (Adria) – Europe convergence, but cannot be correlated regionally; it pre-dates basin inversion-related events reported from the region so far.


2021 ◽  
Vol 151 (3) ◽  
pp. 267-274
Author(s):  
Krešimir Krizmanić ◽  
Krisztina Sebe ◽  
Imre Magyar

Dinoflagellate-cyst based biostratigraphy is an important tool in the stratigraphical subdivision and correlation of the Neogene Lake Pannon deposits. A total of 66 palynological samples were investigated from the Pannonian (upper Miocene) marl succession exposed in the Pécs-Danitzpuszta sand pit in order to evaluate the biostratigraphical assignment and constrain the age of the strata. Earlier attempts to recover dinoflagellate cysts from this important reference section had failed. In our material, six samples contained well-preserved palynomorphs. One sample from the lower part of the succession (D25) contained a probably reworked middle Miocene assemblage. Samples from the middle segment of the succession (D3, D2, D1) indicate the Pontiadinium pecsvaradensis Zone (ca. 10.8 to 10.6 Ma). Samples from the top of the marl (D219, D221) did not give additional stratigraphic information (P. pecsvaradensis Zone or younger). The palynofacies of samples D3 to D221 indicates a relatively distal, calm, occasionally oxygen-deficient, probably deep depositional environment.


2021 ◽  
Vol 151 (3) ◽  
pp. 235-252
Author(s):  
Krisztina Sebe ◽  
Gyula Konrád ◽  
Orsolya Sztanó

The Pécs-Danitzpuszta sand pit is the most important outcrop of the oldest Pannonian (upper Miocene, Tortonian) deposits in southern Hungary. A trench excavated in 2018 exposed Lake Pannon deposits and underlying Paratethys strata down to the upper Badenian (Serravallian), and together with the sand pit they make up a continuous sedimentary succession with a true thickness of ~220 metres. Due to tectonic deformation, middle Miocene deposits and carbonates in the lowermost Pannonian are overturned. Layers become vertical close to the marl-sand boundary, then the dip changes to normal, with continuously decreasing dip angles. The exposed succession starts with 5 m of upper Badenian (13.8-12.6 Ma old) calcareous marls and sandy limestones with sublittoral, then littoral molluscs, which were deposited in the normal salinity seawaters of the Central Paratethys. The overlying 8 m of sand, silt, sandy breccia and conglomerate are fossil-free,; only the lowermost silt layer contains reworked Badenian microfauna. This unit probably accumulated from gravity-driven flows in a fan-like, probably terrestrial depositional setting. The next 7.5 m of frequently alternating thin-bedded limestones, marls and clays with sublittoral biota represent rapid transgression. Foraminifers, ostracods, molluscs and calcareous nannoplankton indicate late Sarmatian, then Pannonian age for this interval. However, the locations of the boundaries indicated by the various groups are not are not consistent, making the position of the Sarmatian/Pannonian boundary uncertain. The Sarmatian beds with marine fossils still accumulated in the Paratethys, between ~12.1–11.6 Ma, under varying salinities due among others to temporary freshwater input. The Pannonian strata already represent sediments of the brackish Lake Pannon. Above these beds, uniform calcareous marl becomes dominant with some clay layers and graded or structureless conglomerate to sandstone interbeds. The deposition of the overall 64- m- thick Pannonian calcareous marl section took place in the open, probably few -hundred -metres -deep water of the lake between ~11.62 and 10.5–10.2 Ma. It may represent a rare, well-exposed surface occurrence of the Endrőd Formation which is known from thousands of wells in the Pannonian Basin. Above this section, a 6-7 -m- thick transitional interval of silty marls and sands is followed by ~140 m of limonitic, pebbly sands. They have poor to moderate sorting and rounding, metre -thick beds with transitional boundaries and abundant fossils and clasts reworked from older Miocene units. Their accumulation took place between 10.2-10.5 and 9.6 Ma by gravity flows connected to deep-water portions of fan deltas.


2021 ◽  
Vol 74 (3) ◽  
pp. 253-271
Author(s):  
Tomislav Kurečić ◽  
◽  
Marijan Kovačić ◽  
Anita Grizelj ◽  
◽  
...  

Viviparus beds are sediments deposited in lacustrine and fluvial freshwater environments (Lake Slavonia) during the Pliocene and the earliest Pleistocene. A detailed field study and mineralogical, petrographic and chemical analyses were carried out to determine their composition and origin in the area of Vukomeričke Gorice, Central Croatia. Viviparus beds are characterized by the vertical and lateral exchange of mineralogically and chemically mature pelites and sands. Pelitic sediments consist mainly of detrital quartz, calcite, dolomite and feldspar grains, with smectite as the most common clay mineral. Quartz and the most resistant lithic fragments dominate the sandy detritus. The composition of the sediments indicates their origin from the recycled orogen, while their textural immaturity suggests a short transport distance. Most of the material was re-deposited from the underlying Upper Miocene sediments, originally of Alpine provenance. A lesser proportion originated from Palaeogene sediments, Triassic carbonate rocks, basic or acidic magmatic rocks and metamorphites. The Medvednica and Žumberak Mts. were the most important source areas, while a smaller proportion of the material could have come from the Moslavačka gora Mt. and Banovina region. The uniform composition of the Viviparus beds over the entire vertical distribution of the sediments clearly indicates that the source areas did not change during their deposition. A significant change from the texturally and compositionally mature Upper Miocene clastic detritus of alpine origin, to the texturally immature material of the Viviparus beds of local origin is a consequence of compression and inversion of the previously extensional basin resulting in the uplifting and erosion of the mountains within the SW part of the Pannonian Basin System.


Sign in / Sign up

Export Citation Format

Share Document