carbonate platform margin
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 2)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Nicolò Chizzini ◽  
Andrea Artoni ◽  
Luigi Torelli ◽  
Alina Polonia ◽  
Jessica Basso ◽  
...  

<p>In the collisional setting of the Northern Ionian Sea, the Calabrian Accretionary Wedge, which represents the Southeastward prolongation of the Southern Apennines, is facing directly the subducting Apula plate, which is mainly made of Mesozoic to Tertiary Carbonate Platform. The aim of this contribution is to illuminate the structures and stratigraphic relationships between the frontal part of the orogenic belt, the foredeep and adjacent Apulian foreland. Because of the lack of exploration wells in these deep offshore basins, a detailed seismic facies analysis of six multichannel seismic profiles has been carried out to define the tectonic-sedimentary evolution of the study area.<br>Seismic interpretation allows to identify four main structural domains. The highly tectonized accretionary wedge is characterized by compressive tectonics. A narrow foredeep basin is filled by a thick (1,5–0,9 s TWT) Pliocene-Holocene subhorizontal succession and lies above buried normal faults. A massive carbonate succession of the Apulian Platform, shows reef and carbonate platform margin facies. A layered carbonate succession of the Apulian Platform is characterized by ‘'intra-platform'’ facies and located in the easternmost portion of the area. Seismic stratigraphic analysis allows to define two main regional unconformities with characteristic relationships with structural trends: i) the Messinian unconformity, related to a regional and significant erosion associated to paleokarst processes on the exposed Mesozoic Apulian Platform, is cut by an array of normal faults affecting the entire Apulian foreland and by reverse faults in the accretionary wedge; ii) the middle Pliocene Unconformity, an angular and erosive unconformity truncating the Lower Pliocene reflectors, is affected by normal faults in the foreland and by compressive tectonics in the Calabrian wedge that is progressively advancing.<br>Seismic data analyses shows that the compressive tectonics is currently active in the Calabrian Accretionary Wedge and concentrated in the innermost domains where thrust faults deform the sea floor. The Mesozoic Apulian Platform is affected by normal faulting driven by flexural bending since Lower Pliocene. The new structural map shows that transpressive and positive inversion tectonics is a common deformational style in the foreland that can be associated with the Dinaric-Hellenic subduction, which is synchronous with respect to Calabrian subduction. According to these observations, the compressive tectonics affecting the Apulia plate can be interpreted as related to both the Calabrian and Dinaric-Hellenic shortening processes. The interference of these two orogenic wedges with the Apulia Plate plays an important role in defining the tectonic evolution of the Northern Ionian Sea.</p>



2021 ◽  
Vol 329 ◽  
pp. 01055
Author(s):  
Ding Hansheng

In order to clarify the sedimentary development law under the Cambrian Ordovician regional stratigraphic framework in Tadong area, and lay a theoretical foundation for further oil and gas exploration in the study area. The distribution, characteristics and evolution of main sedimentary facies belts of Cambrian Ordovician are studied by means of drilling core observation, cast thin section identification, logging curve feature analysis, seismic profile and well connection profile. The results show that the Cambrian middle lower Ordovician in Tadong area is equivalent to a second-order sequence and can be further divided into 12 thirdorder sequences. Each third-order sequence is mainly composed of transgressive and highstand tracts. Carbonate platform margin beach facies and Reef (mound) beach complex facies are favorable reservoir development facies belts in this area; Under the regional stratigraphic framework, three types of sedimentary facies can be identified in Cambrian Ordovician, and a total of 10 subfacies are developed; The evolution of sedimentary facies is mainly controlled by the rise and fall of sea level, which is characterized by the migration of platform margin facies and the change of platform facies.







2014 ◽  
Vol 484-485 ◽  
pp. 612-615
Author(s):  
Feng Zhu

Based on the integrated study of the outcrops, the seismic, drilling and logging data of Lianglitage formation in central Tarim Basin, the sequence stratigraphic framework of the platform margin is built, and the Lianglitage formation is divided into 3 third-order sequences. The vertical pattern and lateral distribution for carbonate reef-bank reservoir in sequence stratigraphic framework are analyzed. The reef-bank reservoir mainly developed in highstand system tract of sequence Ssq2, and distributed along the carbonate platform margin of the Middle-Late Ordovician in central Tarim Basin. The mudstone mound, organic reef, granule bank are vertically stacked. Laterally, the area of well shun3-shun4-shun2-shun6 are characterized by multiphase bank reservoir overlapping, and the area of well TZ82-TZ44 - TZ161-TZ24 - TZ26 are characterized by multiphase organic reef and bank overlapping. The reef-bank complexes in sequence Ssq2 are the main targets of exploration in central Tarim Basin.



2013 ◽  
Vol 286-287 ◽  
pp. 20-38 ◽  
Author(s):  
Robert H.C. Madden ◽  
Moyra E.J. Wilson


Sign in / Sign up

Export Citation Format

Share Document