Comparative Evaluation of PASCO and National Committee for Clinical Laboratory Standards M27-A Broth Microdilution Methods for Antifungal Drug Susceptibility Testing of Yeasts

2000 ◽  
Vol 38 (6) ◽  
pp. 2254-2260
Author(s):  
Beth A. Arthington-Skaggs ◽  
Milwood Motley ◽  
David W. Warnock ◽  
Christine J. Morrison
1998 ◽  
Vol 36 (4) ◽  
pp. 926-930 ◽  
Author(s):  
Kate G. Davey ◽  
Ann D. Holmes ◽  
Elizabeth M. Johnson ◽  
Adrien Szekely ◽  
David W. Warnock

The FUNGITEST method (Sanofi Diagnostics Pasteur, Paris, France) is a microplate-based procedure for the breakpoint testing of six antifungal agents (amphotericin B, flucytosine, fluconazole, itraconazole, ketoconazole, and miconazole). We compared the FUNGITEST method with a broth microdilution test, performed according to National Committee for Clinical Laboratory Standards document M27-A guidelines, for determining the in vitro susceptibilities of 180 isolates ofCandida spp. (50 C. albicans, 50C. glabrata, 10 C. kefyr, 20C. krusei, 10 C. lusitaniae, 20C. parapsilosis, and 20 C. tropicalisisolates) and 20 isolates of Cryptococcus neoformans. Overall, there was 100% agreement between the methods for amphotericin B, 95% agreement for flucytosine, 84% agreement for miconazole, 83% agreement for itraconazole, 77% agreement for ketoconazole, and 76% agreement for fluconazole. The overall agreement between the methods exceeded 80% for all species tested with the exception ofC. glabrata (71% agreement). The poorest agreement between the results for individual agents was seen with C. glabrata (38% for fluconazole, 44% for ketoconazole, and 56% for itraconazole) and C. tropicalis (50% for miconazole). The FUNGITEST method misclassified as susceptible 2 of 12 (16.6%) fluconazole-resistant isolates, 2 of 10 (20%) itraconazole-resistant isolates, and 4 of 8 (50%) ketoconazole-resistant isolates of several Candida spp. Further development of the FUNGITEST procedure will be required before it can be recommended as an alternative method for the susceptibility testing of Candida spp. or C. neoformans.


1999 ◽  
Vol 43 (6) ◽  
pp. 1383-1386 ◽  
Author(s):  
Kieren A. Marr ◽  
Tige R. Rustad ◽  
John H. Rex ◽  
Theodore C. White

ABSTRACT The interpretation of end points in azole antifungal drug susceptibility testing is problematic, in part due to incomplete growth inhibition of Candida species. Such trailing growth can cause the MICs of fluconazole for some isolates to be low (<1 μg/ml) after 24 h of growth but much higher (>64 μg/ml) after 48 h. Isolates having this type of growth have been described as having a low-high phenotype. Although these isolates would be considered resistant by current National Committee of Clinical Laboratory Standards definitions, growing evidence suggests that they are susceptible in vivo. To further characterize these isolates in vitro, microdilution susceptibility testing comparing the complex defined medium RPMI 1640 to a defined minimal medium (yeast nitrogen broth) was performed. Isolates having trailing growth in MOPS (morpholinepropanesulfonic acid)-buffered RPMI 1640 (pH 7.0) were found to have clear end points in the minimal medium at its native pH of 4.5. The pH of the medium influenced the low-high phenotype, as these same isolates trailed in minimal medium adjusted to a pH of ≥6.0 but did not trail in RPMI 1640 adjusted to a pH of ≤5.0. This pH effect was independent of the medium buffering capacity, as trailing was decreased in both minimal medium and RPMI 1640 (pH 4.5) buffered in citrate. Adjustment in the pH of MOPS-buffered RPMI 1640 reduced trailing in multiple strains of Candida albicans without affecting the MICs for isolates having known susceptible (low-low) and resistant (high-high) phenotypes. Adjustment of the medium pH could be considered to eliminate trailing in azole drug susceptibility testing.


1999 ◽  
Vol 37 (5) ◽  
pp. 1480-1483 ◽  
Author(s):  
Adrien Szekely ◽  
Elizabeth M. Johnson ◽  
David W. Warnock

We compared the E test with a broth microdilution method, performed according to National Committee for Clinical Laboratory Standards document M27-A guidelines, for determining the in vitro susceptibilities of 90 isolates of pathogenic molds (10 Absidia corymbifera, 10 Aspergillus flavus, 10Aspergillus fumigatus, 10 Aspergillus niger, 10Aspergillus terreus, 10 Exophiala dermatitidis, 10 Fusarium solani, 10 Scedosporium apiospermum, 5 Scedosporium prolificans, and 5Scopulariopsis brevicaulis). Overall, there was 71% agreement between the results of the two methods for amphotericin B (E-test MICs within ±2 log2 dilutions of broth microdilution MICs) and 88% agreement with the results for itraconazole. The overall levels of agreement (within ±2 log2 dilutions) were ≥80% for 5 of the 10 species tested against amphotericin B and 8 of the 10 species tested against itraconazole. The best agreement between the results was seen withA. fumigatus and A. terreus (100% of results for both agents within ±2 log2 dilutions). The poorest agreement was seen with S. apiospermum, S. prolificans, and S. brevicaulis tested against amphotericin B (20% of results within ±2 log2 dilutions). In every instance, this low level of agreement was due to isolates for which the broth microdilution MICs were low but for which the E-test MICs were much higher. The E test appears to be a suitable alternative procedure for testing the susceptibility of Aspergillusspp. and some other molds to amphotericin B or itraconazole.


2021 ◽  
Author(s):  
◽  
Philip W Fowler

AbstractDrug susceptibility testing of M. tuberculosis is rooted in a binary susceptible/resistant paradigm. There are considerable advantages in measuring the minimum inhibitory concentrations (MICs) of a panel of drugs for an isolate, including quantifying the magnitude of effect conferred by genetic variants and being able to identify isolates with elevated MICs that can still be treated with standard therapy. It is necessary, however, to measure the epidemiological cutoff values (ECOFF/ECVs) to permit comparison with qualitative data. Here we present ECOFF/ECVs for 13 anti-TB compounds, including bedaquiline and delamanid, derived from 20,637 clinical isolates collected by 14 laboratories based in 11 countries on five continents. Each isolate was incubated for 14 days on a dry 96-well broth microdilution plate and then read. Resistance to the majority of the drugs due to prior exposure is expected and the MIC distributions for many of the compounds are complex and therefore a phenotypically wild-type population could not be defined. Since a majority of samples also underwent genetic sequencing, we defined a genotypically wild-type population and measured the MIC of the 99th percentile by direct measurement and via fitting a Gaussian using interval regression. The proposed ECOFF/ECV values were then validated by comparing to the MIC distributions of high-confidence genetic variants that confer resistance and to qualitative drug susceptibility tests obtained via Mycobacterial Growth Indicator Tube and the Microscopic-Observation Drug-Susceptibility assay.


2017 ◽  
Vol 55 (6) ◽  
pp. 1883-1893 ◽  
Author(s):  
Cheryl Leong ◽  
Antonino Buttafuoco ◽  
Martin Glatz ◽  
Philipp P. Bosshard

ABSTRACTMalasseziais a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays forMalasseziaspp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing ofMalasseziathat is based on the CLSI and EUCAST assays forCandidaand other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of allMalasseziaspp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13Malasseziaspecies to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC90values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. AllMalasseziaspp. were resistant to echinocandins and griseofulvin. SomeMalasseziaspp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treatMalasseziaskin infections. In summary, our assay enables the fast and reliable susceptibility testing ofMalasseziaspp. with a large panel of different antifungals.


Sign in / Sign up

Export Citation Format

Share Document