scholarly journals Multicenter Comparative Evaluation of Six Commercial Systems and the National Committee for Clinical Laboratory Standards M27-A Broth Microdilution Method for Fluconazole Susceptibility Testing of Candida Species

2002 ◽  
Vol 40 (8) ◽  
pp. 2953-2958 ◽  
Author(s):  
G. Morace ◽  
G. Amato ◽  
F. Bistoni ◽  
G. Fadda ◽  
P. Marone ◽  
...  
2004 ◽  
Vol 70 (4) ◽  
pp. 2398-2403 ◽  
Author(s):  
Mokhlasur Rahman ◽  
Inger Kühn ◽  
Motiur Rahman ◽  
Barbro Olsson-Liljequist ◽  
Roland Möllby

ABSTRACT We describe the ScanMIC method, a colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. The method is a slight modification of the National Committee for Clinical Laboratory Standards (NCCLS) recommended broth microdilution method that uses a redox indicator 2,3,5-triphenyltetrazolium chloride (TTC) to enhance the estimate of bacterial growth inhibition in a microplate and a flatbed scanner to capture the microplate image. In-house software was developed to transform the microplate image into numerical values based on the amount of bacterial growth and to generate the MICs automatically. The choice of indicator was based on its low toxicity and ease of reading by scanner. We compared the ScanMIC method to the NCCLS recommended broth microdilution method with 197 coliform strains against seven antibacterial agents. The interpretative categorical agreement was obtained in 92.4% of the assays, and the agreement for MIC differences (within ±1 log2 dilution) was obtained in 96% for ScanMIC versus broth microdilution and 97% for a two-step incubation colorimetric broth microdilution versus the broth microdilution method. The method was found to be labor-saving, not to require any initial investment, and to show reliable results. Thus, the ScanMIC method could be useful for epidemiological surveys that include susceptibility testing of bacteria.


2000 ◽  
Vol 44 (1) ◽  
pp. 226-229 ◽  
Author(s):  
Francesco Barchiesi ◽  
Daniela Arzeni ◽  
Annette W. Fothergill ◽  
Luigi Falconi Di Francesco ◽  
Francesca Caselli ◽  
...  

ABSTRACT A broth microdilution method performed in accordance with the National Committee for Clinical Laboratory Standards guidelines was used to compare the in vitro activity of the new antifungal triazole SCH 56592 (SCH) to that of fluconazole (FLC), itraconazole (ITC), and ketoconazole (KETO) against 257 clinical yeast isolates. They included 220 isolates belonging to 12 different species of Candida, 15 isolates each of Cryptococcus neoformans andSaccharomyces cerevisiae, and seven isolates ofRhodotorula rubra. The MICs of SCH at which 50% (MIC50) and 90% (MIC90) of the isolates were inhibited were 0.06 and 2.0 μg/ml, respectively. In general, SCH was considerably more active than FLC (MIC50 and MIC90 of 1.0 and 64 μg/ml, respectively) and slightly more active than either ITC (MIC50 and MIC90 of 0.25 and 2.0 μg/ml, respectively) and KETO (MIC50 and MIC90 of 0.125 and 4.0 μg/ml, respectively). Our in vitro data suggest that SCH has significant potential for clinical development.


2001 ◽  
Vol 9 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Jose A. Simoes ◽  
Alla A. Aroutcheva ◽  
Susan Shott ◽  
Sebastian Faro

Objective:To determine whether metronidazole has an adverse effect on the growth ofLactobacillus.Methods:Hydrogen peroxide- and bacteriocin-producing strains ofLactobacilluswere used as test strains. Concentrations of metronidazole used ranged from 128 to 7000 μg/ml. Susceptibility to metronidazole was conducted by the broth microdilution method recommended by the National Committee for Clinical Laboratory Standards.Results:Growth ofLactobacilluswas partially inhibited at concentrations between 1000 and 4000 μg/ml (p= 0.014). Concentrations ≥ 5000 μg/ml completely inhibited growth ofLactobacillus. Concentrations between 128 and 256 μg/ml stimulated growth ofLactobacillus(p= 0.025 and 0.005, respectively). Concentrations of metronidazole between 64 and 128 μg/ml or ≥ 512 μg/ml did not have an inhibitory or a stimulatory effect on the growth ofLactobacilluscompared to the control.Conclusions:High concentration of metronidazole, i.e. between 1000 and 4000 μg/ml, partially inhibited the growth ofLactobacillus. Concentrations ≥ 5000 μg/ml completely suppressed the growth ofLactobacillus. Concentrations between ≥ 128 and ≤ 256 μg/ml stimulated the growth ofLactobacillus. Further investigation to determine the ideal concentration of metronidazole is needed in order to use the antimicrobial agent effectively in the treatment of bacterial vaginosis.


1998 ◽  
Vol 36 (3) ◽  
pp. 788-791 ◽  
Author(s):  
J. H. Jorgensen ◽  
M. L. McElmeel ◽  
S. A. Crawford

The MicroScan MICroSTREP panel is a recently marketed frozen broth microdilution panel for susceptibility testing of various streptococci, including Streptococcus pneumoniae. The panel contains 10 antimicrobial agents in cation-adjusted Mueller-Hinton broth supplemented with 3% lysed horse blood, similar in concept to the National Committee for Clinical Laboratory Standards (NCCLS) reference broth microdilution method for testing streptococci. A group of 210 isolates of S. pneumoniae were selected to include isolates with previously documented resistance to agents incorporated in the MICroSTREP panel, as well as recent invasive clinical isolates. All isolates were tested simultaneously with the MICroSTREP panel and an NCCLS reference panel whose drug concentrations were prepared to coincide with those of the MICroSTREP panel. Of the 210 isolates, 5 failed to grow in the MICroSTREP panel; 3 of those also did not grow in the reference panel. Essential agreement of MICs determined by the two methods (test MIC ± one dilution of the reference MIC) was 99.6% overall and ranged from 98.0% with chloramphenicol to 100% with penicillin, ceftriaxone, erythromycin, tetracycline, and vancomycin. There were no very major or major interpretive category errors resulting from the MICroSTREP panel tests. Minor interpretive category errors ranged from 12.2% with cefotaxime and 9.8% with ceftriaxone (due mainly to clustering of MICs for the selected strains near the breakpoints) to 0% with chloramphenicol and vancomycin. These results indicate that the MicroScan MICroSTREP frozen panels provide susceptibility results with pneumococci that are essentially equivalent to results derived by the NCCLS reference broth microdilution procedure.


2003 ◽  
Vol 47 (5) ◽  
pp. 1647-1651 ◽  
Author(s):  
Madonna J. Matar ◽  
Luis Ostrosky-Zeichner ◽  
Victor L. Paetznick ◽  
Jose R. Rodriguez ◽  
Enuo Chen ◽  
...  

ABSTRACT The activities of fluconazole and voriconazole against isolates of Candida spp. (n = 400) were tested by the E-test, disk diffusion, and the National Committee for Clinical Laboratory Standards (NCCLS) M27-A2 broth microdilution-based reference methods. More than 96% of isolates found to be susceptible to fluconazole by the reference method were identified as susceptible by the agar-based methods. Lesser degrees of correlation with the reference method were seen for isolates identified as resistant by the agar-based methods. Interpretive categories are not available for voriconazole, but results qualitatively similar to those for fluconazole were seen. The agar-based E-test and disk diffusion methods are reliable alternatives to the NCCLS M27-A2 reference microdilution method for isolates that test susceptible to fluconazole.


1998 ◽  
Vol 42 (7) ◽  
pp. 1601-1604 ◽  
Author(s):  
C. Aguilar ◽  
I. Pujol ◽  
J. Sala ◽  
J. Guarro

ABSTRACT The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, miconazole, itraconazole, ketoconazole, fluconazole, and flucytosine for 52 isolates of Paecilomyces species were evaluated by the broth microdilution method, largely based on the recommendations of the National Committee for Clinical Laboratory Standards (document M27-A). The fungal isolates tested included 16P. variotii, 11 P. lilacinus, 9 P. marquandii, 6 P. fumosoroseus, 4 P. javanicus, and 2 P. viridis isolates and 1 isolate of each of the following species: P. carneus, P. farinosus, P. fulvus, and P. niveus. The MFCs and the MICs at which 90% of isolates were inhibited (MIC90s) for the six antifungal agents were remarkably high; the MIC50s indicated that amphotericin B, miconazole, itraconazole, and ketoconazole had good activities, while fluconazole and flucytosine demonstrated poor efficacy. The ranges of the MICs were generally wider and lower than those of the MFCs. There were significant susceptibility differences among the species. All species with the exception of P. variotii were highly resistant to fluconazole and flucytosine; P. variotii was susceptible to flucytosine. Amphotericin B and the rest of the azoles showed good activity against P. variotii, while all the antifungal agents assayed showed low efficacy against P. lilacinus.


Author(s):  
Bilal Ahmad Wani ◽  
Mohd Rafiq Lone ◽  
Najmus Saqib

Background: In this study, our aim was to identify and isolate Candida species from patients admitted in ICU,s of our hospital and to determine their susceptibilities to various antifungal agents so as to find the local resistance pattern and guide for empirical treatment.Methods: In our study 37 strains of candida were isolated (4 Candida albicans, 33 Non-albicans Candida strains). Candida species were identified by conventional, biochemical and molecular methods. Antifungal susceptibility tests for amphotericin B, fluconazole, itraconazole, ketoconazole and voriconazole were performed with broth microdilution method and E- tests as described by National Committee for Clinical Laboratory Standards (NCCLS).Results: Out of 37 Candida strains, the most prevalent species were C. tropicalis (43.2%), C. parapsilosis (24.3%), C. krusei (16.2%), C. albicans (10.8%), and C. glabrata (2.7%). Among all strains four strains (10.8 %) were resistant, two Candida albicans where found resistant to fluconazole one Candida krusei and one Candida parapsilosis were found to be resistant to all azoles.Conclusions: Candidemia continues to be associated with substantial morbidity and mortality and non albicans Candida species are the commonly isolated pathogen from those patients admitted in tertiary care hospitals in Indian scenario. Thus, it is imperative to perform antifungal susceptibility to select appropriate and effective antifungal therapy.


Sign in / Sign up

Export Citation Format

Share Document