scholarly journals Inhibition of Hepatitis C Virus Replicon RNA Synthesis by PSI-352938, a Cyclic Phosphate Prodrug of β-d-2′-Deoxy-2′-α-Fluoro-2′-β-C-Methylguanosine

2011 ◽  
Vol 55 (6) ◽  
pp. 2566-2575 ◽  
Author(s):  
Angela M. Lam ◽  
Christine Espiritu ◽  
Eisuke Murakami ◽  
Veronique Zennou ◽  
Shalini Bansal ◽  
...  

ABSTRACTPSI-352938 is a novel cyclic phosphate prodrug of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine 5′-monophosphate that has potent activity against hepatitis C virus (HCV)in vitro. The studies described here characterize thein vitroanti-HCV activity of PSI-352938, alone and in combination with other inhibitors of HCV, and the cross-resistance profile of PSI-352938. The effective concentration required to achieve 50% inhibition for PSI-352938, determined using genotype 1a-, 1b-, and 2a-derived replicons stably expressed in the Lunet cell line, were 0.20, 0.13, and 0.14 μM, respectively. The active 5′-triphosphate metabolite, PSI-352666, inhibited recombinant NS5B polymerase from genotypes 1 to 4 with comparable 50% inhibitory concentrations. In contrast, PSI-352938 did not inhibit the replication of hepatitis B virus or human immunodeficiency virusin vitro. PSI-352666 did not significantly affect the activity of human DNA and RNA polymerases. PSI-352938 and its cyclic phosphate metabolites did not affect the cyclic GMP-mediated activation of protein kinase G. Clearance studies using replicon cells demonstrated that PSI-352938 cleared cells of HCV replicon RNA and prevented replicon rebound. An additive to synergistic effect was observed when PSI-352938 was combined with other classes of HCV inhibitors, including alpha interferon, ribavirin, NS3/4A inhibitors, an NS5A inhibitor, and nucleoside/nucleotide and nonnucleoside inhibitors. Cross-resistance studies showed that PSI-352938 remained fully active against replicons containing the S282T or the S96T/N142T amino acid alteration. Replicons that contain mutations conferring resistance to various classes of nonnucleoside inhibitors also remained sensitive to inhibition by PSI-352938. PSI-352938 is currently being evaluated in a phase I clinical study in genotype 1-infected individuals.

2014 ◽  
Vol 59 (2) ◽  
pp. 988-997 ◽  
Author(s):  
Tami Pilot-Matias ◽  
Rakesh Tripathi ◽  
Daniel Cohen ◽  
Isabelle Gaultier ◽  
Tatyana Dekhtyar ◽  
...  

ABSTRACTThe development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively.In vitro, the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log10was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.)


2009 ◽  
Vol 53 (6) ◽  
pp. 2660-2662 ◽  
Author(s):  
David L. Wyles ◽  
Kelly A. Kaihara ◽  
Brent E. Korba ◽  
Robert T. Schooley ◽  
James R. Beadle ◽  
...  

ABSTRACT The octadecyloxyethyl (ODE) and hexadecyloxypropyl (HDP) esters of (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA) are potent inhibitors of orthopoxvirus, herpesvirus, human immunodeficiency virus type 1, and hepatitis B virus replication in vitro. HDP and ODE esters of (S)-HPMPA and (R)-HPMPA were evaluated for their activity in hepatitis C virus (HCV) replicon assays using luciferase (1B and 2A replicons) or RNA (1B) quantification. The ODE ester of (S)-HPMPA [ODE-(S)-HPMPA] was the most active compound, with 50% effective concentrations (EC50s) in the 0.69 to 1.31 μM range. HDP and ODE esters of (R)-HPMPA were severalfold less active, while (S)-HPMPA and (R)-HPMPA were inactive. In genotype 1A and 1B replicons analyzed by HCV RNA analysis, ODE-(S)-HPMPA was the most active compound, with EC50s of 1.8 and 2.1 μM, respectively.


2010 ◽  
Vol 54 (8) ◽  
pp. 3187-3196 ◽  
Author(s):  
Angela M. Lam ◽  
Eisuke Murakami ◽  
Christine Espiritu ◽  
Holly M. Micolochick Steuer ◽  
Congrong Niu ◽  
...  

ABSTRACT The hepatitis C virus (HCV) NS5B RNA polymerase facilitates the RNA synthesis step during the HCV replication cycle. Nucleoside analogs targeting the NS5B provide an attractive approach to treating HCV infections because of their high barrier to resistance and pan-genotype activity. PSI-7851, a pronucleotide of β-d-2′-deoxy-2′-fluoro-2′-C-methyluridine-5′-monophosphate, is a highly active nucleotide analog inhibitor of HCV for which a phase 1b multiple ascending dose study of genotype 1-infected individuals was recently completed (M. Rodriguez-Torres, E. Lawitz, S. Flach, J. M. Denning, E. Albanis, W. T. Symonds, and M. M. Berry, Abstr. 60th Annu. Meet. Am. Assoc. Study Liver Dis., abstr. LB17, 2009). The studies described here characterize the in vitro antiviral activity and cytotoxicity profile of PSI-7851. The 50% effective concentration for PSI-7851 against the genotype 1b replicon was determined to be 0.075 ± 0.050 μM (mean ± standard deviation). PSI-7851 was similarly effective against replicons derived from genotypes 1a, 1b, and 2a and the genotype 1a and 2a infectious virus systems. The active triphosphate, PSI-7409, inhibited recombinant NS5B polymerases from genotypes 1 to 4 with comparable 50% inhibitory concentrations. PSI-7851 is a specific HCV inhibitor, as it lacks antiviral activity against other closely related and unrelated viruses. PSI-7409 also lacked any significant activity against cellular DNA and RNA polymerases. No cytotoxicity, mitochondrial toxicity, or bone marrow toxicity was associated with PSI-7851 at the highest concentration tested (100 μM). Cross-resistance studies using replicon mutants conferring resistance to modified nucleoside analogs showed that PSI-7851 was less active against the S282T replicon mutant, whereas cells expressing a replicon containing the S96T/N142T mutation remained fully susceptible to PSI-7851. Clearance studies using replicon cells demonstrated that PSI-7851 was able to clear cells of HCV replicon RNA and prevent viral rebound.


2016 ◽  
Vol 60 (10) ◽  
pp. 6207-6215 ◽  
Author(s):  
Christopher M. Owens ◽  
Bradley B. Brasher ◽  
Alex Polemeropoulos ◽  
Michael H. J. Rhodin ◽  
Nicole McAllister ◽  
...  

ABSTRACTEDP-239, a novel hepatitis C virus (HCV) inhibitor targeting nonstructural protein 5A (NS5A), has been investigatedin vitroandin vivo. EDP-239 is a potent, selective inhibitor with potency at picomolar to nanomolar concentrations against HCV genotypes 1 through 6. In the presence of human serum, the potency of EDP-239 was reduced by less than 4-fold. EDP-239 is additive to synergistic with other direct-acting antivirals (DAAs) or host-targeted antivirals (HTAs) in blocking HCV replication and suppresses the selection of resistancein vitro. Furthermore, EDP-239 retains potency against known DAA- or HTA-resistant variants, with half-maximal effective concentrations (EC50s) equivalent to those for the wild type. In a phase I, single-ascending-dose, placebo-controlled clinical trial, EDP-239 demonstrated excellent pharmacokinetic properties that supported once daily dosing. A single 100-mg dose of EDP-239 resulted in reductions in HCV genotype 1a viral RNA of >3 log10IU/ml within the first 48 h after dosing and reductions in genotype 1b viral RNA of >4-log10IU/ml within 96 h. (This study has been registered at ClinicalTrials.gov under identifier NCT01856426.)


2013 ◽  
Vol 58 (2) ◽  
pp. 647-653 ◽  
Author(s):  
Huiling Yang ◽  
Margaret Robinson ◽  
Amoreena C. Corsa ◽  
Betty Peng ◽  
Guofeng Cheng ◽  
...  

ABSTRACTGS-9451 is a selective hepatitis C virus (HCV) NS3 protease inhibitor in development for the treatment of genotype 1 (GT1) HCV infection. Key preclinical properties of GS-9451, includingin vitroantiviral activity, selectivity, cross-resistance, and combination activity, as well as pharmacokinetic properties, were determined. In multiple GT1a and GT1b replicon cell lines, GS-9451 had mean 50% effective concentrations (EC50s) of 13 and 5.4 nM, respectively, with minimal cytotoxicity; similar potency was observed in chimeric replicons encoding the NS3 protease gene of GT1 clinical isolates. GS-9451 was less active in GT2a replicon cells (EC50= 316 nM). Additive to synergisticin vitroantiviral activity was observed when GS-9451 was combined with other agents, including alpha interferon, ribavirin, and the polymerase inhibitors GS-6620 and tegobuvir (GS-9190), as well as the NS5A inhibitor ledipasvir (GS-5885). GS-9451 retained wild-type activity against multiple classes of NS5B and NS5A inhibitor resistance mutations. GS-9451 was stable in hepatic microsomes and hepatocytes from human and three other tested species. Systemic clearance was low in dogs and monkeys but high in rats. GS-9451 showed good oral bioavailability in all three species tested. In rats, GS-9451 levels were ∼40-fold higher in liver than plasma after intravenous dosing, and elimination of GS-9451 was primarily through biliary excretion. Together, these results are consistent with the antiviral activity observed in a recent phase 1b study. The results ofin vitrocross-resistance and combination antiviral assays support the ongoing development of GS-9451 in combination with other agents for the treatment of chronic HCV infection.


2013 ◽  
Vol 58 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Jill Walker ◽  
Renae Crosby ◽  
Amy Wang ◽  
Ermias Woldu ◽  
Jessica Vamathevan ◽  
...  

ABSTRACTGSK2336805 is an inhibitor of hepatitis C virus (HCV) with picomolar activity on the standard genotype 1a, 1b, and 2a subgenomic replicons and exhibits a modest serum shift. GSK2336805 was not active on 22 RNA and DNA viruses that were profiled. We have identified changes in the N-terminal region of NS5A that cause a decrease in the activity of GSK2336805. These mutations in the genotype 1b replicon showed modest shifts in compound activity (<13-fold), while mutations identified in the genotype 1a replicon had a more dramatic impact on potency. GSK2336805 retained activity on chimeric replicons containing NS5A patient sequences from genotype 1 and patient and consensus sequences for genotypes 4 and 5 and part of genotype 6. Combination and cross-resistance studies demonstrated that GSK2336805 could be used as a component of a multidrug HCV regimen either with the current standard of care or in combination with compounds with different mechanisms of action that are still progressing through clinical development.


2016 ◽  
Vol 60 (5) ◽  
pp. 2954-2964 ◽  
Author(s):  
Frederick C. Lahser ◽  
Karin Bystol ◽  
Stephanie Curry ◽  
Patricia McMonagle ◽  
Ellen Xia ◽  
...  

ABSTRACTThe selection of resistance-associated variants (RAVs) against single agents administered to patients chronically infected with hepatitis C virus (HCV) necessitates that direct-acting antiviral agents (DAAs) targeting multiple viral proteins be developed to overcome failure resulting from emergence of resistance. The combination of grazoprevir (formerly MK-5172), an NS3/4A protease inhibitor, and elbasvir (formerly MK-8742), an NS5A inhibitor, was therefore studied in genotype 1a (GT1a) replicon cells. Both compounds were independently highly potent in GT1a wild-type replicon cells, with 90% effective concentration (EC90) values of 0.9 nM and 0.006 nM for grazoprevir and elbasvir, respectively. No cross-resistance was observed when clinically relevant NS5A and NS3 RAVs were profiled against grazoprevir and elbasvir, respectively. Kinetic analyses of HCV RNA reduction over 14 days showed that grazoprevir and elbasvir inhibited prototypic NS5A Y93H and NS3 R155K RAVs, respectively, with kinetics comparable to those for the wild-type GT1a replicon. In combination, grazoprevir and elbasvir interacted additively in GT1a replicon cells. Colony formation assays with a 10-fold multiple of the EC90values of the grazoprevir-elbasvir inhibitor combination suppressed emergence of resistant colonies, compared to a 100-fold multiple for the independent agents. The selected resistant colonies with the combination harbored RAVs that required two or more nucleotide changes in the codons. Mutations in the cognate gene caused greater potency losses for elbasvir than for grazoprevir. Replicons bearing RAVs identified from resistant colonies showed reduced fitness for several cell lines and may contribute to the activity of the combination. These studies demonstrate that the combination of grazoprevir and elbasvir exerts a potent effect on HCV RNA replication and presents a high genetic barrier to resistance. The combination of grazoprevir and elbasvir is currently approved for chronic HCV infection.


2012 ◽  
Vol 87 (3) ◽  
pp. 1649-1657 ◽  
Author(s):  
Xiuying Liu ◽  
Yibing Huang ◽  
Min Cheng ◽  
Ling Pan ◽  
Youhui Si ◽  
...  

ABSTRACTChronic infection by hepatitis C virus (HCV) is a cause of the global burden of liver diseases. HCV entry into hepatocytes is a complicated and multistep process that represents a promising target for antiviral intervention. The recently reported amphipathic α-helical virucidal peptide (C5A) from the HCV NS5A protein suggests a new category of antiviral drug candidates. In this study, to identify C5A-like HCV inhibitors, synthetic peptides derived from the C5A-corresponding NS5 protein region of selectedFlaviviridaeviruses were evaluated for their anti-HCV activities. A peptide from GB virus A (GBV-A), but not other flaviviruses, demonstrated an inhibitory effect on HCV infection. Through a series of sequence optimizations and modifications of the peptide helicity and hydrophobicity, we obtained a peptide designated GBVA10-9 with highly potent anti-HCV activity. GBVA10-9 suppressed infection with both cell culture-derived and pseudotyped HCVin vitro, and the 50% cell culture inhibitory concentration ranged from 20 nM to 160 nM, depending on the genotypic origin of the envelope proteins. GBVA10-9 had no detectable effects on either HCV attachment to Huh7.5.1 cells or viral RNA replication. No virucidal activity was found with GBVA10-9, suggesting an action mechanism distinct from that of C5A. The inhibitory effect of GBVA10-9 appeared to occur at the postbinding step during viral entry. Taken together, the results with GBVA10-9 demonstrated a potent activity for blocking HCV entry that might be used in combination with other antivirals directly targeting virus-encoded enzymes. Furthermore, GBVA10-9 also provides a novel tool to dissect the detailed mechanisms of HCV entry.


2016 ◽  
Vol 66 (2) ◽  
pp. 219-231 ◽  
Author(s):  
Bahaa G. M. Youssif ◽  
Yaseen A. M. Mohamed ◽  
Mohammed T. A. Salim ◽  
Fuyuhiko Inagaki ◽  
Chisato Mukai ◽  
...  

Abstract New derivatives of 2-thiobenzimidazole incorporating triazole moiety were synthesized, characterized and tested in vitro for antiviral activity against hepatitis C virus (HCV) and hepatitis B virus (HBV). Their cytotoxicity was determined by the reduction in the number of viable cell. All of the synthesized compounds are inactive against HBV and some showed activity against HCV. In particular, two compounds showed significant activity, 2-{4-[(1-benzoylbenzimidazol-2-ylthio)methyl]-1H-1,2,3-triazol-1-yl}-N-(p-nitro-phenyl)-acetamide (13) and 2-(4-{[1-(p-chlorobenzoyl)-benzimidazol-2-ylthio)methyl]-1H-1,2,3-triazol-1-yl}-N-(p-nitrophenyl)-acetamide (17). The results give an insight into the importance of the substituent at position 2 of benzimidazole for the inhibition of HCV.


2014 ◽  
Vol 58 (8) ◽  
pp. 4431-4442 ◽  
Author(s):  
J. P. Bilello ◽  
L. B. Lallos ◽  
J. F. McCarville ◽  
M. La Colla ◽  
I. Serra ◽  
...  

ABSTRACTThe hepatitis C virus (HCV) nonstructural 5A (NS5A) protein is a clinically validated target for drugs designed to treat chronic HCV infection. This study evaluated thein vitroactivity, selectivity, and resistance profile of a novel anti-HCV compound, samatasvir (IDX719), alone and in combination with other antiviral agents. Samatasvir was effective and selective against infectious HCV and replicons, with 50% effective concentrations (EC50s) falling within a tight range of 2 to 24 pM in genotype 1 through 5 replicons and with a 10-fold EC50shift in the presence of 40% human serum in the genotype 1b replicon. The EC90/EC50ratio was low (2.6). A 50% cytotoxic concentration (CC50) of >100 μM provided a selectivity index of >5 × 107. Resistance selection experiments (with genotype 1a replicons) and testing against replicons bearing site-directed mutations (with genotype 1a and 1b replicons) identified NS5A amino acids 28, 30, 31, 32, and 93 as potential resistance loci, suggesting that samatasvir affects NS5A function. Samatasvir demonstrated an overall additive effect when combined with interferon alfa (IFN-α), ribavirin, representative HCV protease, and nonnucleoside polymerase inhibitors or the nucleotide prodrug IDX184. Samatasvir retained full activity in the presence of HIV and hepatitis B virus (HBV) antivirals and was not cross-resistant with HCV protease, nucleotide, and nonnucleoside polymerase inhibitor classes. Thus, samatasvir is a selective low-picomolar inhibitor of HCV replicationin vitroand is a promising candidate for future combination therapies with other direct-acting antiviral drugs in HCV-infected patients.


Sign in / Sign up

Export Citation Format

Share Document