scholarly journals Using Population Pharmacokinetics To Determine Gentamicin Dosing during Extended Daily Diafiltration in Critically Ill Patients with Acute Kidney Injury

2010 ◽  
Vol 54 (9) ◽  
pp. 3635-3640 ◽  
Author(s):  
Jason A. Roberts ◽  
Jonathan Field ◽  
Adam Visser ◽  
Rosemary Whitbread ◽  
Mandy Tallot ◽  
...  

ABSTRACT The objective of the present prospective pharmacokinetic study was to describe the variability of plasma gentamicin concentrations in critically ill patients with acute kidney injury (AKI) necessitating extended daily diafiltration (EDD-f) using a population pharmacokinetic model and to subsequently perform Monte Carlo dosing simulations to determine which dose regimen achieves the pharmacodynamic targets the most consistently. We collected data from 28 gentamicin doses in 14 critically ill adult patients with AKI requiring EDD-f and therapeutic gentamicin. Serial plasma samples were collected. A population pharmacokinetic model was used to describe the pharmacokinetics of gentamicin and perform Monte Carlo simulations with doses of between 3 mg/kg of body weight and 7 mg/kg and at various time points before commencement of EDD-f to evaluate the optimal dosing regimen for achieving pharmacodynamic targets. A two-compartment pharmacokinetic model adequately described the gentamicin clearance while patients were on and off EDD-f. The plasma half-life of gentamicin during EDD-f was 13.8 h, whereas it was 153.4 h without EDD-f. Monte Carlo simulations suggest that dosing with 6 mg/kg every 48 h either 30 min or 1 h before the commencement of EDD-f results in 100% attainment of the target maximum concentration drug in plasma (<10 mg/liter) and sufficient attainment of the target area under the concentration-time curve from 0 to 24 h (AUC0-24; 70 to 120 mg·h/liter). None of the simulated dosing regimens satisfactorily achieved the targets of the minimum concentrations of drug in plasma (<1.0 mg/liter) at 24 h. In conclusion, dosing of gentamicin 30 min to 1 h before the commencement of an EDD-f treatment enables attainment of target peak concentrations for maximal therapeutic effect while enhancing drug clearance to minimize toxicity. Redosing in many patients should occur after 48 h, and we recommend the use of therapeutic drug monitoring to guide dosing to optimize achievement of the AUC0-24 targets.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Amaia Soraluce ◽  
Helena Barrasa ◽  
Eduardo Asín-Prieto ◽  
Jose Ángel Sánchez-Izquierdo ◽  
Javier Maynar ◽  
...  

Antimicrobial treatment in critically ill patients remains challenging. The aim of this study was to develop a population pharmacokinetic model for linezolid in critically ill patients and to evaluate the adequacy of current dosing recommendation (600 mg/12 h). Forty inpatients were included, 23 of whom were subjected to continuous renal replacement therapies (CRRT). Blood and effluent samples were drawn after linezolid administration at defined time points, and linezolid levels were measured. A population pharmacokinetic model was developed, using NONMEM 7.3. The percentage of patients that achieved the pharmacokinetic/pharmacodynamic (PK/PD) targets was calculated (AUC24/MIC > 80 and 100% T>MIC). A two-compartment model best described the pharmacokinetics of linezolid. Elimination was conditioned by the creatinine clearance and by the extra-corporeal clearance if the patient was subjected to CRRT. For most patients, the standard dose of linezolid did not cover infections caused by pathogens with MIC ≥ 2 mg/L. Continuous infusion may be an alternative, especially when renal function is preserved.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Susanna Edith Medellín-Garibay ◽  
Silvia Romano-Moreno ◽  
Pilar Tejedor-Prado ◽  
Noelia Rubio-Álvaro ◽  
Aida Rueda-Naharro ◽  
...  

ABSTRACT Pathophysiological changes involved in drug disposition in critically ill patients should be considered in order to optimize the dosing of vancomycin administered by continuous infusion, and certain strategies must be applied to reach therapeutic targets on the first day of treatment. The aim of this study was to develop a population pharmacokinetic model of vancomycin to determine clinical covariates, including mechanical ventilation, that influence the wide variability of this antimicrobial. Plasma vancomycin concentrations from 54 critically ill patients were analyzed simultaneously by a population pharmacokinetic approach. A nomogram for dosing recommendations was developed and was internally evaluated through stochastic simulations. The plasma vancomycin concentration-versus-time data were best described by a one-compartment open model with exponential interindividual variability associated with vancomycin clearance and the volume of distribution. Residual error followed a homoscedastic trend. Creatinine clearance and body weight significantly dropped the objective function value, showing their influence on vancomycin clearance and the volume of distribution, respectively. Characterization based on the presence of mechanical ventilation demonstrated a 20% decrease in vancomycin clearance. External validation (n = 18) was performed to evaluate the predictive ability of the model; median bias and precision values were 0.7 mg/liter (95% confidence interval [CI], −0.4, 1.7) and 5.9 mg/liter (95% CI, 5.4, 6.4), respectively. A population pharmacokinetic model was developed for the administration of vancomycin by continuous infusion to critically ill patients, demonstrating the influence of creatinine clearance and mechanical ventilation on vancomycin clearance, as well as the implications for targeting dosing rates to reach the therapeutic range (20 to 30 mg/liter).


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Cédric Carrié ◽  
Faustine Delzor ◽  
Stéphanie Roure ◽  
Vincent Dubuisson ◽  
Laurent Petit ◽  
...  

ABSTRACT The aim was to assess the appropriateness of recommended regimens for empirical MIC coverage in critically ill patients with open-abdomen and negative-pressure therapy (OA/NPT). Over a 5-year period, every critically ill patient who received amikacin and who underwent therapeutic drug monitoring (TDM) while being treated by OA/NPT was retrospectively included. A population pharmacokinetic (PK) modeling was performed considering the effect of 10 covariates (age, sex, total body weight [TBW], adapted body weight [ABW], body surface area [BSA], modified sepsis-related organ failure assessment [SOFA] score, vasopressor use, creatinine clearance [CLCR], fluid balance, and amount of fluids collected by the NPT over the sampling day) in patients who underwent continuous renal replacement therapy (CRRT) or did not receive CRRT. Monte Carlo simulations were employed to determine the fractional target attainment (FTA) for the PK/pharmacodynamic [PD] targets (maximum concentration of drug [Cmax]/MIC ratio of ≥8 and a ratio of the area under the concentration-time curve from 0 to 24 h [AUC0–24]/MIC of ≥75). Seventy critically ill patients treated by OA/NPT (contributing 179 concentration values) were included. Amikacin PK concentrations were best described by a two-compartment model with linear elimination and proportional residual error, with CLCR and ABW as significant covariates for volume of distribution (V) and CLCR for CL. The reported V) in non-CRRT and CRRT patients was 35.8 and 40.2 liters, respectively. In Monte Carlo simulations, ABW-adjusted doses between 25 and 35 mg/kg were needed to reach an FTA of >85% for various renal functions. Despite an increased V and a wide interindividual variability, desirable PK/PD targets may be achieved using an ABW-based loading dose of 25 to 30 mg/kg. When less susceptible pathogens are targeted, higher dosing regimens are probably needed in patients with augmented renal clearance (ARC). Further studies are needed to assess the effect of OA/NPT on the PK parameters of antimicrobial agents.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Anne-Grete Märtson ◽  
Kim C. M. van der Elst ◽  
Anette Veringa ◽  
Jan G. Zijlstra ◽  
Albertus Beishuizen ◽  
...  

ABSTRACT The objective of this study was to develop a population pharmacokinetic model and to determine a dosing regimen for caspofungin in critically ill patients. Nine blood samples were drawn per dosing occasion. Fifteen patients with (suspected) invasive candidiasis had one dosing occasion and five had two dosing occasions, measured on day 3 (±1) of treatment. Pmetrics was used for population pharmacokinetic modeling and probability of target attainment (PTA). A target 24-h area under the concentration-time curve (AUC) value of 98 mg·h/liter was used as an efficacy parameter. Secondarily, the AUC/MIC targets of 450, 865, and 1,185 were used to calculate PTAs for Candida glabrata, C. albicans, and C. parapsilosis, respectively. The final 2-compartment model included weight as a covariate on volume of distribution (V). The mean V of the central compartment was 7.71 (standard deviation [SD], 2.70) liters/kg of body weight, the mean elimination constant (Ke) was 0.09 (SD, 0.04) h−1, the rate constant for the caspofungin distribution from the central to the peripheral compartment was 0.44 (SD, 0.39) h−1, and the rate constant for the caspofungin distribution from the peripheral to the central compartment was 0.46 (SD, 0.35) h−1. A loading dose of 2 mg/kg on the first day, followed by 1.25 mg/kg as a maintenance dose, was chosen. With this dose, 98% of the patients were expected to reach the AUC target on the first day and 100% of the patients on the third day. The registered caspofungin dose might not be suitable for critically ill patients who were all overweight (≥120 kg), over 80% of median weight (78 kg), and around 25% of lower weight (≤50 kg). A weight-based dose regimen might be appropriate for achieving adequate exposure of caspofungin in intensive care unit patients.


2011 ◽  
Vol 55 (12) ◽  
pp. 5868-5873 ◽  
Author(s):  
Kashyap Patel ◽  
Jason A. Roberts ◽  
Jeffrey Lipman ◽  
Susan E. Tett ◽  
Megan E. Deldot ◽  
...  

ABSTRACTFluconazole is a widely used antifungal agent that is extensively reabsorbed in patients with normal renal function. However, its reabsorption can be compromised in patients with acute kidney injury, thereby leading to altered fluconazole clearance and total systemic exposure. Here, we explore the pharmacokinetics of fluconazole in 10 critically ill anuric patients receiving continuous venovenous hemodiafiltration (CVVHDF). We performed Monte Carlo simulations to optimize dosing to appropriate pharmacodynamic endpoints for this population. Pharmacokinetic profiles of initial and steady-state doses of 200 mg intravenous fluconazole twice daily were obtained from plasma and CVVHDF effluent. Nonlinear mixed-effects modeling (NONMEM) was used for data analysis and to perform Monte Carlo simulations. For each dosing regimen, the free drug area under the concentration-time curve (fAUC)/MIC ratio was calculated. The percentage of patients achieving an AUC/MIC ratio greater than 25 was then compared for a range of MIC values. A two-compartment model adequately described the disposition of fluconazole in plasma. The estimate for total fluconazole clearance was 2.67 liters/h and was notably 2.3 times faster than previously reported in healthy volunteers. Of this, fluconazole clearance by the CVVHDF route (CLCVVHDF) represented 62% of its total systemic clearance. Furthermore, the predicted efficiency of CLCVVHDFdecreased to 36.8% when filters were in use >48 h. Monte Carlo simulations demonstrated that a dose of 400 mg twice daily maximizes empirical treatment against fungal organisms with MIC up to 16 mg/liter. This is the first study we are aware of that uses Monte Carlo simulations to inform dosing requirements in patients where tubular reabsorption of fluconazole is probably nonexistent.


Sign in / Sign up

Export Citation Format

Share Document