scholarly journals Efficacy of Usual and High Doses of Daptomycin in Combination with Rifampin versus Alternative Therapies in Experimental Foreign-Body Infection by Methicillin-Resistant Staphylococcus aureus

2010 ◽  
Vol 54 (12) ◽  
pp. 5251-5256 ◽  
Author(s):  
C. Garrigós ◽  
O. Murillo ◽  
G. Euba ◽  
R. Verdaguer ◽  
F. Tubau ◽  
...  

ABSTRACT The treatment of prosthetic joint infections caused by methicillin-resistant Staphylococcus aureus (MRSA) continues to be a challenge for the clinician. The aim of this study was to evaluate the efficacies of daptomycin at usual and high doses (equivalent to 6 and 10 mg/kg of body weight/day, respectively, in humans) and in combination with rifampin and to compare the activities to those of conventional anti-MRSA therapies. We used MRSA strain HUSA 304, with the following MICs and minimal bactericidal concentrations (MBCs), respectively: daptomycin, 1 μg/ml and 4 μg/ml; vancomycin, 2 μg/ml and 4 μg/ml; linezolid, 2 μg/ml and >32 μg/ml; and rifampin, 0.03 μg/ml and 0.5 μg/ml. In time-kill curves, only daptomycin and its combinations with rifampin achieved a bactericidal effect in log and stationary phases. For in vivo studies, we used a rat foreign-body infection model. Therapy was administered for 7 days with daptomycin at 100 mg/kg/day and 45/mg/kg/day, vancomycin at 50 mg/kg/12 h, rifampin at 25 mg/kg/12 h, and linezolid at 35 mg/kg/12 h, and each antibiotic was also combined with rifampin. Among monotherapies, daptomycin at 100 mg/kg/day and rifampin performed better than vancomycin and linezolid. In combination with rifampin, both dosages of daptomycin were significantly better than all other combinations, but daptomycin at 100 mg/kg/day plus rifampin achieved better cure rates at day 11 (P < 0.05) than daptomycin at 45 mg/kg/day plus rifampin. Resistant strains were found in monotherapies with rifampin and daptomycin at 45 mg/kg/day. In conclusion, daptomycin at high doses was the most effective monotherapy and also improved the efficacy of the combination with rifampin against foreign-body infections by MRSA. Clinical studies should confirm whether this combination may be considered the first-line treatment for foreign-body infections by MRSA in humans.

2012 ◽  
Vol 56 (7) ◽  
pp. 3806-3811 ◽  
Author(s):  
C. Garrigós ◽  
O. Murillo ◽  
J. Lora-Tamayo ◽  
R. Verdaguer ◽  
F. Tubau ◽  
...  

ABSTRACTDespite the use of daptomycin alone at high doses (greater than 6 mg/kg of body weight/day) against difficult-to-treat infections, clinical failures and resistance appeared. Recently, the combination daptomycin-cloxacillin showed enhanced efficacy in clearing bacteremia caused by methicillin-resistantStaphylococcus aureus(MRSA). The aim of this study was to evaluate the efficacy of daptomycin at usual and high doses (equivalent to 6 and 10 mg/kg/day in humans, respectively) in combination with cloxacillin in a rat tissue cage infection model by MRSA and to compare its efficacy to that of daptomycin-rifampin. We used MRSA strain ATCC BAA-39. In the log- and stationary-phase kill curves, daptomycin-cloxacillin improved the bactericidal activity of daptomycin, especially in log phase. Forin vivostudies, therapy was administered intraperitoneally for 7 days with daptomycin at 100 mg/kg/day and 45/mg/kg/day (daptomycin 100 and daptomycin 45), daptomycin 100-cloxacillin at 200 mg/kg/12 h, daptomycin 45-cloxacillin, and daptomycin 100-rifampin at 25 mg/kg/12 h. Daptomycin-rifampin was the best therapy (P< 0.05). Daptomycin 45 was the least effective treatment and did not protect against the emergence of resistant strains. There were no differences between the two dosages of daptomycin plus cloxacillin in any situation, and both protected against resistance. The overall effect of the addition of cloxacillin to daptomycin was a significantly greater cure rate (against adhered bacteria) than that for daptomycin alone. In conclusion, daptomycin-cloxacillin enhanced modestly thein vivoefficacy of daptomycin alone against foreign-body infection by MRSA and was less effective than daptomycin plus rifampin. The benefits of adding cloxacillin to daptomycin should be especially evaluated against infections by rifampin-resistant MRSA and for protection against the emergence of daptomycin nonsusceptibility.


2009 ◽  
Vol 53 (10) ◽  
pp. 4252-4257 ◽  
Author(s):  
O. Murillo ◽  
C. Garrigós ◽  
M. E. Pachón ◽  
G. Euba ◽  
R. Verdaguer ◽  
...  

ABSTRACT Since the currently approved dose of daptomycin (6 mg/kg of body weight/day) has been associated with clinical failures and resistance development, higher doses for some difficult-to-treat infections are being proposed. We studied the efficacy of daptomycin at high doses (equivalent to 10 mg/kg/day in humans) and compared it to that of reference and alternative treatments in a model of foreign-body infection with methicillin (meticillin)-resistant Staphylococcus aureus. In vitro studies were conducted with bacteria in the log and stationary phases. For the in vivo model, therapy with daptomycin at 100 mg/kg/day, vancomycin at 50 mg/kg/12 h, rifampin (rifampicin) at 25 mg/kg/12 h, or linezolid at 35 mg/kg/12 h was administered for 7 days. Antibiotic efficacy was evaluated using either bacteria from tissue cage fluids or those attached to coverslips. We screened for the emergence of linezolid- and rifampin-resistant strains and analyzed the surviving population from the daptomycin-treated group. Only daptomycin was bactericidal in both the log- and stationary-phase studies. Daptomycin (decrease in the log number of CFU per milliliter of tissue cage fluid, 2.57) and rifampin (decrease, 2.6 log CFU/ml) were better (P < 0.05) than vancomycin (decrease, 1.1 log CFU/ml) and linezolid (decrease, 0.9 log CFU/ml) in the animal model. Rifampin-resistant strains appeared in 60% of cases, whereas no linezolid resistance emerged. No daptomycin-resistant subpopulations were detected at frequencies of 10−7 or higher. In conclusion, daptomycin at high doses proved to be as effective as rifampin, and the two were the most active therapies for this experimental foreign-body infection. These high doses ensured a profile of safety from the development of resistance.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1481
Author(s):  
John Jairo Aguilera-Correa ◽  
Sara Fernández-López ◽  
Iskra Dennisse Cuñas-Figueroa ◽  
Sandra Pérez-Rial ◽  
Hanna-Leena Alakomi ◽  
...  

Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S120-S121
Author(s):  
Sungim Choi ◽  
Taeeun Kim ◽  
Seongman Bae ◽  
Eunmi Yang ◽  
Su-Jin Park ◽  
...  

Abstract Background There is a concern that the vancomycin MIC of methicillin-resistant Staphylococcus aureus (MRSA) could be increased by concomitant colistin administered against multidrug-resistant gram-negative pathogen. Methods We confirmed the molecular genotypes of MRSA blood isolates collected in a tertiary hospital in Seoul, South Korea, and selected representative strains from the community-associated MRSA strains (CA-MRSA, ST72-SCCmec IV) and hospital-acquired MRSA strains (HA-MRSA, ST5-SCCmec II). USA CA-MRSA (USA300, ST8-SCCmec IV) and MRSA standard strain (ATCC 43300, ST39-SCCmec II) were also used for comparison with representative. We identified changes of the vancomycin MIC in MRSA by colistin exposure in a checkerboard assay and performed a time-kill assay to evaluate the combined effect of vancomycin and colistin on MRSA. In addition, we administered vancomycin, colistin, and combination of two antibiotics, respectively, to a neutropenic murine thigh infection model to evaluate the in vivo antagonistic effect of colistin on vancomycin treatment. Results In the checkerboard assay, all 4 MRSA strains showed a tendency for the vancomycin MIC to increase along with increasing concentrations of colistin. However, the time-kill assay showed the antagonism of vancomycin and colistin only against ST5-MRSA, when vancomycin concentration was 2 times the vancomycin MIC (Figure 1). No antagonism was observed in other strains. In the murine thigh infection model of ST5-MRSA, vancomycin monotherapy showed a significant log CFU reduction compared with a combination of vancomycin and colistin at 24 hours, demonstrating the antagonistic effect of vancomycin and colistin combination (Figure 2). Conclusion This study showed that exposure of colistin to certain MRSA strains may reduce the susceptibility to vancomycin. Combination therapy with vancomycin and colistin for MDR pathogens infections might result in treatment failure for concurrent MRSA infection. Disclosures All authors: No reported disclosures.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 606 ◽  
Author(s):  
Maria Mir ◽  
Naveed Ahmed ◽  
Andi Dian Permana ◽  
Aoife Maria Rodgers ◽  
Ryan F. Donnelly ◽  
...  

Methicillin resistant Staphylococcus aureus (MRSA) induced skin infections have become a challenging problem due to the escalating antibiotic resistance. Carvacrol (CAR) has been reported to be effective against MRSA. However, due to its characteristics, CAR exhibits low skin retention. In this study, CAR was formulated into site-specific nanoparticle (NPs) delivery system using poly(ε-caprolactone) (PCL), following incorporation into a hydrogel matrix to facilitate dermal delivery. The release study exhibited significantly higher release of CAR from PCL NPs in the presence of bacterial lipase, highlighting its potential for differential delivery. Moreover, encapsulation of CAR in PCL NPs resulted in a two-fold increase in its anti-MRSA activity. Dermatokinetic studies revealed that the NPs loaded hydrogel was able to enhance skin retention of CAR after 24 h (83.29 ± 3.15%), compared to free CAR-loaded hydrogel (0.85 ± 0.14%). Importantly, this novel approach exhibited effective antimicrobial activity in an ex-vivo skin infection model. Hence, these findings have proven the concept that the loading of CAR into a responsive NPs system can lead to sustained antimicrobial effect at the desired site, and may provide a novel effective approach for treatment of MRSA induced skin infections. However, further studies must be conducted to investigate in-vivo efficacy of the developed system in an appropriate infection model.


2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


2011 ◽  
Vol 55 (7) ◽  
pp. 3453-3460 ◽  
Author(s):  
Arnold Louie ◽  
Weiguo Liu ◽  
Robert Kulawy ◽  
G. L. Drusano

ABSTRACTTorezolid phosphate (TR-701) is the phosphate monoester prodrug of the oxazolidinone TR-700 which demonstrates potentin vitroactivity against Gram-positive bacteria, including methicillin-susceptibleStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA). The pharmacodynamics of TR-701 or TR-700 (TR-701/700) againstS. aureusis incompletely defined. Single-dose pharmacokinetic studies were conducted in mice for TR-701/700. Forty-eight-hour dose range and 24-hour dose fractionation studies were conducted in a neutropenic mouse thigh model ofS. aureusinfection using MRSA ATCC 33591 to identify the dose and schedule of administration of TR-701/700 that was linked with optimized antimicrobial effect. Additional dose range studies compared the efficacies of TR-701/700 and linezolid for one MSSA strain and one community-associated MRSA strain. In dose range studies, TR-701/700 was equally bactericidal against MSSA and MRSA. Mean doses of 37.6 and 66.9 mg/kg of body weight/day of TR-701/700 resulted in stasis and 1 log CFU/g decreases in bacterial densities, respectively, at 24 h, and mean doses of 35.3, 46.6, and 71.1 mg/kg/day resulted in stasis and 1 and 2 log CFU/g reductions, respectively, at 48 h. Linezolid administered at doses as high as 150 mg/kg/day did not achieve stasis at either time point. Dose fractionation studies demonstrated that the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the pharmacodynamic index for TR-701/700 that was linked with efficacy. TR-701/700 was highly active against MSSA and MRSA,in vivo, and was substantially more efficacious than linezolid, although linezolid's top exposure has half the human exposure. Dose fractionation studies showed that AUC/MIC was the pharmacodynamic index linked with efficacy, indicating that once-daily dosing in humans is feasible.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Wessam Abdelhady ◽  
Arnold S. Bayer ◽  
Rachelle Gonzales ◽  
Liang Li ◽  
Yan Q. Xiong

ABSTRACT We compared the efficacy of telavancin (TLV) and daptomycin (DAP) in an experimental rabbit endocarditis model caused by two clinically derived daptomycin-resistant (DAPr) methicillin-resistant Staphylococcus aureus (MRSA) strains. TLV treatment significantly reduced MRSA densities in all target tissues and increased the percentage of these organs rendered culture negative compared to those with the untreated control or DAP-treated animals. These results demonstrate that TLV has potent in vivo efficacy against DAPr MRSA isolates in this invasive endovascular infection model.


1997 ◽  
Vol 41 (10) ◽  
pp. 2278-2281 ◽  
Author(s):  
R Nagano ◽  
K Shibata ◽  
T Naito ◽  
A Fuse ◽  
K Asano ◽  
...  

The in vivo activity of BO-3482, which has a dithiocarbamate chain at the C-2 position of 1beta-methyl-carbapenem, was compared with those of vancomycin and imipenem in murine models of septicemia and thigh infection with methicillin-resistant Staphylococcus aureus (MRSA). Because BO-3482 was more susceptible than imipenem to renal dehydropeptidase I in a kinetic study of hydrolysis by this renal enzyme, the therapeutic efficacy of BO-3482 was determined during coadministration with cilastatin. In the septicemia models, which involved two homogeneous MRSA strains and one heterogeneous MRSA strain, the 50% effective doses were, respectively, 4.80, 6.06, and 0.46 mg/kg of body weight for BO-3482; 5.56, 2.15, and 1.79 mg/kg for vancomycin; and >200, >200, and 15.9 mg/kg for imipenem. BO-3482 was also as effective as vancomycin in an MRSA septicemia model with mice with cyclophosphamide-induced immunosuppression. In the thigh infection model with a homogeneous MRSA strain, the bacterial counts in tissues treated with BO-3482-cilastatin were significantly reduced in a dose-dependent manner compared with the counts in those treated with vancomycin and imipenem-cilastatin (P < 0.001). These results indicate that BO-3482-cilastatin is as effective as vancomycin in murine systemic infections and is more bactericidal than vancomycin in local-tissue infections. The potent in vivo activity of BO-3482-cilastatin against such MRSA infections can be ascribed to the good in vitro anti-MRSA activity and improved pharmacokinetics in mice when BO-3482 is combined with cilastatin and to the bactericidal nature of the carbapenem.


2008 ◽  
Vol 52 (6) ◽  
pp. 2156-2162 ◽  
Author(s):  
Kerry L. LaPlante ◽  
Steven N. Leonard ◽  
David R. Andes ◽  
William A. Craig ◽  
Michael J. Rybak

ABSTRACT Controversy exists about the most effective treatment options for community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and about the ability of these strains to develop inducible resistance to clindamycin during therapy. Using both in vitro pharmacodynamic and murine thigh infection models, we evaluated and compared several antimicrobial compounds against CA-MRSA. Strains with inducible macrolide lincosamide-streptogramin type B (iMLSB) resistance and strains in which resistance was noninducible were evaluated. Two levels of inocula (105 and 107) were evaluated for clindamycin activity in the in vivo model. In both models, the antimicrobial evaluation was performed in triplicate, and bacterial quantification occurred over 72 h, with drug doses that were designed to simulate the free drug area-under-the-concentration-time curve values (fAUCs) obtained from human samples. When the activity of clindamycin against the iMLSB strains was evaluated, constitutive resistance was noted at 24 h (MIC of >256), and failure was noted at an inoculum of ≥106 in the in vivo models. However, at a low inoculum (105) in the murine thigh-infection model, clindamycin demonstrated modest activity, reducing the CFU/thigh count for clindamycin resistance-inducible strains at 72 h (0.45 to 1.3 logs). Overall, administration of daptomycin followed by vancomycin demonstrated the most significant kill against all strains in both models. Against the clindamycin noninducible strain, clindamycin and doxycycline demonstrated significant kill. Doxycycline, linezolid, and trimethoprim-sulfamethoxazide (not run in the murine model) demonstrated bacteriostatic activity against clindamycin resistance-inducible isolates. This study demonstrates that clindamycin's activity against the iMLSB strains tested is partially impacted by inoculum size. At present, there are several alternatives that appear promising for treating clindamycin resistance-inducible strains of CA-MRSA.


Sign in / Sign up

Export Citation Format

Share Document