scholarly journals First Linezolid-Resistant Clinical Isolates of Mycobacterium tuberculosis

2007 ◽  
Vol 51 (4) ◽  
pp. 1534-1536 ◽  
Author(s):  
Elvira Richter ◽  
Sabine Rüsch-Gerdes ◽  
Doris Hillemann

ABSTRACT Linezolid resistance was found in 4 (1.9%) of 210 multidrug-resistant Mycobacterium tuberculosis strains. The MICs of linezolid were 4 μg/ml (one strain) and 8 μg/ml (three strains). Since no mutations were detected in potential target genes, the mechanism of resistance remains unclear.

2014 ◽  
Vol 69 (9) ◽  
pp. 2369-2375 ◽  
Author(s):  
Tomasz Jagielski ◽  
Zofia Bakuła ◽  
Katarzyna Roeske ◽  
Michał Kamiński ◽  
Agnieszka Napiórkowska ◽  
...  

2010 ◽  
Vol 55 (1) ◽  
pp. 355-360 ◽  
Author(s):  
F. Brossier ◽  
N. Veziris ◽  
C. Truffot-Pernot ◽  
V. Jarlier ◽  
W. Sougakoff

ABSTRACTEthionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active againstMycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded byndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETHr) isolates, 24 ETH-susceptible (ETHs) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETHSip; defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETHrisolates, we found mutations inethA,ethR, orinhAor its promoter, which mostly corresponded to new alterations inethAandethR. The 9 ETHrisolates without a mutation in these three genes (9/47, 19%) had no mutation inndh, and a single isolate had a mutation inmshA. Of the 16 ETHSipisolates, 7 had a mutation inethA, 8 had no detectable mutation, and 1 had a mutation inmshA. Finally, of the 24 ETHsisolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in theinhApromoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETHrisolates, highlighting the complexity of the mechanisms of ETH resistance inM. tuberculosis.


2014 ◽  
Vol 59 (1) ◽  
pp. 444-449 ◽  
Author(s):  
Analise Z. Reeves ◽  
Patricia J. Campbell ◽  
Melisa J. Willby ◽  
James E. Posey

ABSTRACTAs the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. TherrsA1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between therrsA1401G mutation and CAP resistance, with up to 40% ofrrsA1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring therrsA1401G mutation and found that the CAP MICs ranged from 8 μg/ml to 40 μg/ml. These results were drastically different from engineered A1401G mutants generated in isogenicMycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 μg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 μg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome.


Sign in / Sign up

Export Citation Format

Share Document