scholarly journals Impact of Real-Time Therapeutic Drug Monitoring on the Prescription of Antibiotics in Burn Patients Requiring Admission to the Intensive Care Unit

2017 ◽  
Vol 62 (3) ◽  
Author(s):  
A. Fournier ◽  
P. Eggimann ◽  
O. Pantet ◽  
J. L. Pagani ◽  
E. Dupuis-Lozeron ◽  
...  

ABSTRACT As pharmacokinetics after burn trauma are difficult to predict, we conducted a 3-year prospective, monocentric, randomized, controlled trial to determine the extent of under- and overdosing of antibiotics and further evaluate the impact of systematic therapeutic drug monitoring (TDM) with same-day real-time dose adaptation to reach and maintain antibiotic concentrations within the therapeutic range. Forty-five consecutive burn patients treated with antibiotics were prospectively screened. Forty fulfilled the inclusion criteria; after one patient refused to participate and one withdrew consent, 19 were randomly assigned to an intervention group (patients with real-time antibiotic concentration determination and subsequent adaptations) and 19 were randomly assigned to a standard-of-care group (patients with antibiotic administration at the physician's discretion without real-time TDM). Seventy-three infection episodes were analyzed. Before the intervention, only 46/82 (56%) initial trough concentrations fell within the range. There was no difference between groups in the initial trough concentrations (adjusted hazard ratio = 1.39 [95% confidence interval {CI}, 0.81 to 2.39], P = 0.227) or the time to reach the target. However, thanks to real-time dose adjustments, the trough concentrations of the intervention group remained more within the predefined range (57/77 [74.0%] versus 48/85 [56.5%]; adjusted odd ratio [OR] = 2.34 [95% CI, 1.17 to 4.81], P = 0.018), more days were spent within the target range (193 days/297 days on antibiotics [65.0%] versus 171 days/311 days in antibiotics [55.0%]; adjusted OR = 1.64 [95% CI, 1.16 to 2.32], P = 0.005), and fewer results were below the target trough concentrations (25/118 [21.2%] versus 44/126 [34.9%]; adjusted OR = 0.47 [95% CI, 0.26 to 0.87], P = 0.015). No difference in infection outcomes was observed between the study groups. Systematic TDM with same-day real-time dose adaptation was effective in reaching and maintaining therapeutic antibiotic concentrations in infected burn patients, which prevented both over- and underdosing. A larger multicentric study is needed to further evaluate the impact of this strategy on infection outcomes and the emergence of antibiotic resistance during long-term burn treatment. (This study was registered with the ClinicalTrials.gov platform under registration no. NCT01965340 on 27 September 2013.)

Burns ◽  
2015 ◽  
Vol 41 (5) ◽  
pp. 956-968 ◽  
Author(s):  
Anne Fournier ◽  
Philippe Eggimann ◽  
Jean-Luc Pagani ◽  
Jean-Pierre Revelly ◽  
Laurent A. Decosterd ◽  
...  

Author(s):  
Paul Firman ◽  
Karen Whitfield ◽  
Ken‐Soon Tan ◽  
Alexandra Clavarino ◽  
Karen Hay

Author(s):  
Susanne Weber ◽  
Sara Tombelli ◽  
Ambra Giannetti ◽  
Cosimo Trono ◽  
Mark O’Connell ◽  
...  

AbstractObjectivesTherapeutic drug monitoring (TDM) plays a crucial role in personalized medicine. It helps clinicians to tailor drug dosage for optimized therapy through understanding the underlying complex pharmacokinetics and pharmacodynamics. Conventional, non-continuous TDM fails to provide real-time information, which is particularly important for the initial phase of immunosuppressant therapy, e.g., with cyclosporine (CsA) and mycophenolic acid (MPA).MethodsWe analyzed the time course over 8 h of total and free of immunosuppressive drug (CsA and MPA) concentrations measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 16 kidney transplant patients. Besides repeated blood sampling, intravenous microdialysis was used for continuous sampling. Free drug concentrations were determined from ultracentrifuged EDTA-plasma (UC) and compared with the drug concentrations in the respective microdialysate (µD). µDs were additionally analyzed for free CsA using a novel immunosensor chip integrated into a fluorescence detection platform. The potential of microdialysis coupled with an optical immunosensor for the TDM of immunosuppressants was assessed.ResultsUsing LC-MS/MS, the free concentrations of CsA (fCsA) and MPA (fMPA) were detectable and the time courses of total and free CsA comparable. fCsA and fMPA and area-under-the-curves (AUCs) in µDs correlated well with those determined in UCs (r≥0.79 and r≥0.88, respectively). Moreover, fCsA in µDs measured with the immunosensor correlated clearly with those determined by LC-MS/MS (r=0.82).ConclusionsThe new microdialysis-supported immunosensor allows real-time analysis of immunosuppressants and tailor-made dosing according to the AUC concept. It readily lends itself to future applications as minimally invasive and continuous near-patient TDM.


Diagnosis ◽  
2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Adrian Klak ◽  
Steven Pauwels ◽  
Pieter Vermeersch

Abstract Background Dried blood spots (DBSs) could allow patients to prepare their own samples at home and send them to the laboratory for therapeutic drug monitoring (TDM) of immunosuppressants. The purpose of this review is to provide an overview of the current knowledge about the impact of DBS-related preanalytical factors on TDM of tacrolimus, sirolimus and everolimus. Content Blood spot volume, blood spot inhomogeneity, stability of analytes in DBS and hematocrit (Hct) effects are considered important DBS-related preanalytical factors. In addition, the influence of drying time has recently been identified as a noteworthy preanalytical factor. Tacrolimus is not significantly influenced by these factors. Sirolimus and everolimus are more prone to heat degradation and exhibited variations in recovery which were dependent on Hct and drying time. Summary and outlook DBS-related preanalytical factors can have a significant impact on TDM for immunosuppressants. Tacrolimus is not significantly influenced by the studied preanalytical factors and is a viable candidate for DBS sampling. For sirolimus and everolimus more validation of preanalytical factors is needed. In particular, drying conditions need to be examined further, as current protocols may mask Hct-dependent effects on recovery. Further validation is also necessary for home-based self-sampling of immunosuppressants as the sampling quality is variable.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S636-S636
Author(s):  
Anooj Shah ◽  
Carly D’Agostino ◽  
Kathleen Cunningham ◽  
Clare Kane ◽  
Michael G Ison ◽  
...  

Abstract Background The utility and clinical impact of therapeutic drug monitoring (TDM) of prophylactic azole antifungals in lung transplant recipients is not well described. The objective of this study was to investigate the impact of TDM of azole prophylaxis in lung transplant recipients on the development of positive fungal events. Methods A retrospective analysis was performed on 47 lung transplant recipients between 2013 and 2018 at Northwestern Memorial Hospital. A positive fungal event was defined as fungal species on BAL culture and/or positive BAL Aspergillus galactomannan (GM) with an index value ≥1.0. Study groups were defined based on attainment of therapeutic trough levels after initiation of oral therapy (therapeutic if posaconazole level ≥0.7 μg/mL or voriconazole ≥1–5.5 μg/mL, subtherapeutic if ≥2 consecutive levels of posaconazole <0.7 μg/mL or voriconazole <1 μg/mL after initial dose increase). Results There were no differences in baseline characteristics (Figure 1). There were a total of 11 fungal events with 3 (12.0%) occurring in the therapeutic cohort and 8 (36.4%) in those subtherapeutic (P = 0.08). In the 5 patients with a positive GM, the mean index was 2.02 ± 0.95. 7/30 (23.3%) of patients on posaconazole had a fungal event, with 2/7 (28.6%) requiring treatment at the time of event. For patients on voriconazole, 4/17 (23.5%) had a fungal event, with 1/4 (25.0%) requiring treatment. Mean time to fungal event was 164.5 ± 8.9 days vs. 135.9 ± 13.7 days in the therapeutic and subtherapeutic group, respectively (P = 0.05). All patients on posaconazole suspension who experienced a fungal event were subtherapeutic (3/3, 100%) compared with the majority of patients on posaconazole delayed release (DR) tablets who achieved therapeutic levels (17/22, 77.3%). Mean posaconazole trough level observed in the patients receiving DR tablet was 2.15 ± 0.95 μg/mL. Conclusion There was an association between two consecutive subtherapeutic azole prophylaxis levels and positive fungal events indicating a role for TDM in lung transplant recipients. Time to fungal event post-transplant was shorter in subtherapeutic patients. As anticipated, the use of posaconazole suspension resulted in subtherapeutic levels. This study presents an opportunity for further research of the impact of TDM on clinical outcomes to optimize patient care. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document