scholarly journals Surveillance of Influenza A resistance to polymerase complex inhibitors by whole genome analysis, 2016-17, 2017-18 and 2018-19 Seasons, Eastern Spain

Author(s):  
Beatriz Mengual-Chuliá ◽  
Andrés Alonso-Cordero ◽  
Laura Cano ◽  
M. del Mar Mosquera ◽  
Patricia de Molina ◽  
...  

Molecular surveillance by whole genome sequencing was used to monitor the susceptibility of circulating Influenza A viruses to three polymerase complex inhibitors. A total of 12 resistance substitutions were found among 285 genomes analysed, but none associated with high levels of resistance. Natural resistance to these influenza A antivirals is currently uncommon.

2014 ◽  
Vol 53 (1) ◽  
pp. 323-326 ◽  
Author(s):  
Birgit De Smet ◽  
Derek S. Sarovich ◽  
Erin P. Price ◽  
Mark Mayo ◽  
Vanessa Theobald ◽  
...  

Burkholderia pseudomalleiisolates with shared multilocus sequence types (STs) have not been isolated from different continents. We identified two STs shared between Australia and Cambodia. Whole-genome analysis revealed substantial diversity within STs, correctly identified the Asian or Australian origin, and confirmed that these shared STs were due to homoplasy.


2019 ◽  
Author(s):  
Marina Escalera-Zamudio ◽  
Ana Georgina Cobián-Güemes ◽  
Blanca Taboada ◽  
Irma López-Martínez ◽  
Joel Armando Vázquez-Pérez ◽  
...  

ABSTRACTThe constant threat of emergence for novel pathogenic influenza A viruses with pandemic potential, makes full-genome characterization of circulating influenza viral strains a high priority, allowing detection of novel and re-assorting variants. Sequencing the full-length genome of influenza A virus traditionally required multiple amplification rounds, followed by the subsequent sequencing of individual PCR products. The introduction of high-throughput sequencing technologies has made whole genome sequencing easier and faster. We present a simple protocol to obtain whole genome sequences of hypothetically any influenza A virus, even with low quantities of starting genetic material. The complete genomes of influenza A viruses of different subtypes and from distinct sources (clinical samples of pdmH1N1, tissue culture-adapted H3N2 viruses, or avian influenza viruses from cloacal swabs) were amplified with a single multisegment reverse transcription-PCR reaction and sequenced using Illumina sequencing platform. Samples with low quantity of genetic material after initial PCR amplification were re-amplified by an additional PCR using random primers. Whole genome sequencing was successful for 66% of the samples, whilst the most relevant genome segments for epidemiological surveillance (corresponding to the hemagglutinin and neuraminidase) were sequenced with at least 93% coverage (and a minimum 10x) for 98% of the samples. Low coverage for some samples is likely due to an initial low viral RNA concentration in the original sample. The proposed methodology is especially suitable for sequencing a large number of samples, when genetic data is urgently required for strains characterization, and may also be useful for variant analysis.


2020 ◽  
Author(s):  
Andreas Papoutsis ◽  
Thomas Borody ◽  
Siba Dolai ◽  
Jordan Daniels ◽  
Skylar Steinberg ◽  
...  

Abstract Background SARS-CoV-2 has been detected not only in respiratory secretions, but also in stool collections. Here were sought to identify SARS-CoV-2 by enrichment NGS from fecal samples, and to utilize whole genome analysis to characterize SARS-CoV-2 mutational variations in COVID-19 patients. Results Study participants underwent testing for SARS-CoV-2 from fecal samples by whole genome enrichment NGS (n = 14), and RT-PCR nasopharyngeal swab analysis (n = 12). The concordance of SARS-CoV-2 detection by enrichment NGS from stools with RT-PCR nasopharyngeal analysis was 100%. Unique variants were identified in four patients, with a total of 33 different mutations among those in which SARS-CoV-2 was detected by whole genome enrichment NGS. Conclusion These results highlight the potential viability of SARS-CoV-2 in feces, its ongoing mutational accumulation, and its possible role in fecal-oral transmission. This study also elucidates the advantages of SARS-CoV-2 enrichment NGS, which may be a key methodology to document complete viral eradication.


2020 ◽  
pp. 104063872093387
Author(s):  
Patrick K. Mitchell ◽  
Brittany D. Cronk ◽  
Ian E. H. Voorhees ◽  
Derek Rothenheber ◽  
Renee R. Anderson ◽  
...  

Epidemics of H3N8 and H3N2 influenza A viruses (IAVs) in dogs, along with recognition of spillover infections from IAV strains typically found in humans or other animals, have emphasized the importance of efficient laboratory testing. Given the lack of active IAV surveillance or immunization requirements for dogs, cats, or horses imported into the United States, serotype prediction and whole-genome sequencing of positive specimens detected at veterinary diagnostic laboratories are also needed. The conserved sequences at the ends of the viral genome segments facilitate universal amplification of all segments of viral genomes directly from respiratory specimens. Although several methods for genomic analysis have been reported, no optimization focusing on companion animal strains has been described, to our knowledge. We compared 2 sets of published universal amplification primers using 26 IAV-positive specimens from dogs, horses, and a cat. Libraries prepared from the resulting amplicons were sequenced using Illumina chemistry, and reference-based assemblies were generated from the data produced by both methods. Although both methods produced high-quality data, coverage profiles and base calling differed between the 2 methods. The sequence data were also used to identify the subtype of the IAV strains sequenced and then compared to standard PCR assays for neuraminidase types N2 and N8.


2019 ◽  
Vol 266 ◽  
pp. 30-33 ◽  
Author(s):  
Daniel Wüthrich ◽  
Daniela Lang ◽  
Nicola F. Müller ◽  
Richard A. Neher ◽  
Tanja Stadler ◽  
...  

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Jessica Galloway-Peña ◽  
Meredith E. Clement ◽  
Batu K. Sharma Kuinkel ◽  
Felicia Ruffin ◽  
Anthony R. Flores ◽  
...  

Abstract Whole-genome analysis was applied to investigate atypical point-source transmission of 2 invasive group A streptococcal (GAS) infections. Isolates were serotype M4, ST39, and genetically indistinguishable. Comparison with MGAS10750 revealed nonsynonymous polymorphisms in ropB and increased speB transcription. This study demonstrates the usefulness of whole-genome analyses for GAS outbreaks.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hong Kai Lee ◽  
Chun Kiat Lee ◽  
Julian Wei-Tze Tang ◽  
Tze Ping Loh ◽  
Evelyn Siew-Chuan Koay

2020 ◽  
Author(s):  
Andreas Papoutsis ◽  
Thomas Borody ◽  
Siba Dolai ◽  
Jordan Daniels ◽  
Skylar Steinberg ◽  
...  

Abstract Background SARS-CoV-2 has been detected not only in respiratory secretions, but also in stool collections. Here were sought to identify SARS-CoV-2 by enrichment NGS from fecal samples, and to utilize whole genome analysis to characterize SARS-CoV-2 mutational variations in COVID-19 patients. Results Study participants underwent testing for SARS-CoV-2 from fecal samples by whole genome enrichment NGS (n = 14), and RT-PCR nasopharyngeal swab analysis (n = 12). The concordance of SARS-CoV-2 detection by enrichment NGS from stools with RT-PCR nasopharyngeal analysis was 100%. Unique variants were identified in four patients, with a total of 33 different mutations among those in which SARS-CoV-2 was detected by whole genome enrichment NGS. Conclusion These results highlight the potential viability of SARS-CoV-2 in feces, its ongoing mutational accumulation, and its possible role in fecal-oral transmission. This study also elucidates the advantages of SARS-CoV-2 enrichment NGS, which may be a key methodology to document complete viral eradication.


Sign in / Sign up

Export Citation Format

Share Document