scholarly journals Understanding Variability in Posaconazole Exposure Using an Integrated Population Pharmacokinetic Analysis

2014 ◽  
Vol 58 (11) ◽  
pp. 6879-6885 ◽  
Author(s):  
Michael J. Dolton ◽  
Roger J. M. Brüggemann ◽  
David M. Burger ◽  
Andrew J. McLachlan

ABSTRACTPosaconazole oral suspension is widely used for antifungal prophylaxis and treatment in immunocompromised patients, with highly variable pharmacokinetics reported in patients due to inconsistent oral absorption. This study aimed to characterize the pharmacokinetics of posaconazole in adults and investigate factors that influence posaconazole pharmacokinetics byusing a population pharmacokinetic approach. Nonlinear mixed-effects modeling was undertaken for two posaconazole studies in patients and healthy volunteers. The influences of demographic and clinical characteristics, such as mucositis, diarrhea, and drug-drug interactions, on posaconazole pharmacokinetics were investigated using a stepwise forward inclusion/backwards deletion procedure. A total of 905 posaconazole concentration measurements from 102 participants were analyzed. A one-compartment pharmacokinetic model with first-order oral absorption with lag time and first-order elimination best described posaconazole pharmacokinetics. Posaconazole relative bioavailability was 55% lower in patients who received posaconazole than in healthy volunteers. Coadministration of proton pump inhibitors (PPIs) or metoclopramide, as well as the occurrence of mucositis or diarrhea, reduced posaconazole relative bioavailability by 45%, 35%, 58%, and 45%, respectively, whereas concomitant ingestion of a nutritional supplement significantly increased bioavailability (129% relative increase). Coadministration of rifampin or phenytoin increased apparent posaconazole clearance by more than 600%, with a smaller increase observed with fosamprenavir (34%). Participant age, weight, or sex did not significantly affect posaconazole pharmacokinetics. Posaconazole absorption was reduced by a range of commonly coadministered medicines and clinical complications, such as mucositis and diarrhea. Avoidance of PPIs and metoclopramide and administration with food or a nutritional supplement are effective strategies to increase posaconazole absorption.

2014 ◽  
Vol 58 (8) ◽  
pp. 4718-4726 ◽  
Author(s):  
Ping Liu ◽  
Diane R. Mould

ABSTRACTTo assess the pharmacokinetics (PK) of voriconazole and anidulafungin in patients with invasive aspergillosis (IA) in comparison with other populations, sparse PK data were obtained for 305 adults from a prospective phase 3 study comparing voriconazole and anidulafungin in combination versus voriconazole monotherapy (voriconazole, 6 mg/kg intravenously [IV] every 12 h [q12h] for 24 h followed by 4 mg/kg IV q12h, switched to 300 mg orally q12h as appropriate; with placebo or anidulafungin IV, a 200-mg loading dose followed by 100 mg q24h). Voriconazole PK was described by a two-compartment model with first-order absorption and mixed linear and time-dependent nonlinear (Michaelis-Menten) elimination; anidulafungin PK was described by a two-compartment model with first-order elimination. For voriconazole, the normal inverse Wishart prior approach was implemented to stabilize the model. Compared to previous models, no new covariates were identified for voriconazole or anidulafungin. PK parameter estimates of voriconazole and anidulafungin are in agreement with those reported previously except for voriconazole clearance (the nonlinear clearance component became minimal). At a 4-mg/kg IV dose, voriconazole exposure tended to increase slightly as age, weight, or body mass index increased, but the difference was not considered clinically relevant. Estimated voriconazole exposures in IA patients at 4 mg/kg IV were higher than those reported for healthy adults (e.g., the average area under the curve over a 12-hour dosing interval [AUC0–12] at steady state was 46% higher); while it is not definitive, age and concomitant medications may impact this difference. Estimated anidulafungin exposures in IA patients were comparable to those reported for the general patient population. This study was approved by the appropriate institutional review boards or ethics committees and registered on ClinicalTrials.gov (NCT00531479).


2022 ◽  
Vol 12 ◽  
Author(s):  
SiChan Li ◽  
SanLan Wu ◽  
WeiJing Gong ◽  
Peng Cao ◽  
Xin Chen ◽  
...  

Purpose: The aims of this study were to establish a joint population pharmacokinetic model for voriconazole and its N-oxide metabolite in immunocompromised patients, to determine the extent to which the CYP2C19 genetic polymorphisms influenced the pharmacokinetic parameters, and to evaluate and optimize the dosing regimens using a simulating approach.Methods: A population pharmacokinetic analysis was conducted using the Phoenix NLME software based on 427 plasma concentrations from 78 patients receiving multiple oral doses of voriconazole (200 mg twice daily). The final model was assessed by goodness of fit plots, non-parametric bootstrap method, and visual predictive check. Monte Carlo simulations were carried out to evaluate and optimize the dosing regimens.Results: A one-compartment model with first-order absorption and mixed linear and concentration-dependent-nonlinear elimination fitted well to concentration-time profile of voriconazole, while one-compartment model with first-order elimination well described the disposition of voriconazole N-oxide. Covariate analysis indicated that voriconazole pharmacokinetics was substantially influenced by the CYP2C19 genetic variations. Simulations showed that the recommended maintenance dose regimen would lead to subtherapeutic levels in patients with different CYP2C19 genotypes, and elevated daily doses of voriconazole might be required to attain the therapeutic range.Conclusions: The joint population pharmacokinetic model successfully characterized the pharmacokinetics of voriconazole and its N-oxide metabolite in immunocompromised patients. The proposed maintenance dose regimens could provide a rationale for dosage individualization to improve clinical outcomes and minimize drug-related toxicities.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 374
Author(s):  
Seung-Hyun Jeong ◽  
Ji-Hun Jang ◽  
Hea-Young Cho ◽  
Yong-Bok Lee

The purpose of this study was to perform population pharmacokinetic (PPK) analysis of tiropramide in healthy Korean subjects, as well as to investigate the possible effects of various covariates on pharmacokinetic (PK) parameters of tiropramide. Although tiropramide is commonly used in digestive system-related diseases as an antispasmodic, PPK reporting and factors affecting PKs are not clearly reported. Thus, this study for healthy subjects is very significant because it could find new covariates in patients that had not been reported before or predict PPK for patients in the clinic by establishing PPK in healthy adults. By using Phoenix NLME, PK, demographic, and genetic data (collected to explain PK diversity of tiropramide in population) analyses were performed. As a basic model, a one-compartment with first-order absorption and lag-time was established and extended to include covariates that influenced the inter-subject variability. The total protein significantly influenced the distribution volume and systemic clearance of tiropramide, but genetic factors such as ABCB1 (1236C>T, 2677G>T/A, and 3435C>T), CYP2D6 (*1 and *10), OCT2 (808G>T), and PEPT1 (1287G>C) genes did not show any significant association with PK parameters of tiropramide. The final PPK model of tiropramide was validated, and suggested that some of the PK diversity in the population could be explained. Herein, we first describe the establishment of the PPK model of tiropramide for healthy Korean subjects, which may be useful as a dosing algorithm for the diseased population.


Sign in / Sign up

Export Citation Format

Share Document