scholarly journals Evaluation of the potent anti-hepatitis B virus agent (-) cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine in a novel in vivo model.

1994 ◽  
Vol 38 (3) ◽  
pp. 616-619 ◽  
Author(s):  
L D Condreay ◽  
R W Jansen ◽  
T F Powdrill ◽  
L C Johnson ◽  
D W Selleseth ◽  
...  
2007 ◽  
Vol 18 (4) ◽  
pp. 213-223 ◽  
Author(s):  
Mark A Feitelson ◽  
Marcia M Clayton ◽  
Bill Sun ◽  
Raymond F Schinazi

Woodchuck hepatitis virus (WHV)-infected woodchucks have been used for preclinical development of drugs against hepatitis B virus (HBV). However, there is no simple in vivo model to evaluate small amounts of compounds against HBV. To develop such a model, HepAD38 cells, in which HBV replication is regulated by tetracycline (tet), were grown as subcutaneous tumours in nude mice. Mice developing viraemia were then left untreated or given tet in the drinking water. In some of the mice given tet, it was removed and the mice were injected intraperitoneally with phosphate buffer saline (PBS), lamivudine (3TC), clevudine (CLV) or tenofovir dipivoxil fumarate (TDF). Virus DNA titres were measured by real-time PCR during and after drug treatment. In water-fed and PBS-injected mice, virus titres reached ∼109copies/ml serum within 35 days of HepAD38 injection, whereas in tet-treated mice, virus titres remained at 104-105copies/ml. HBV DNA levels were suppressed by 3TC, TDF and CLV, with the latter two drugs showing more sustained virus suppression compared with 3TC. Combination therapy with CLV plus TDF was much more effective than either drug alone in suppressing virus titre for at least 3 weeks after the end of treatment. There was no demonstrable toxicity to HepAD38 cells in drug-treated mice. Hence, a robust tet-controlled system for HBV replication in vivo was demonstrated, validated with monotherapies against HBV and shown to be useful in assessing combination therapy. This system will be useful for preclinical assessment of small amounts of single or multiple compounds against HBV in vivo.


2015 ◽  
Vol 41 (08) ◽  
Author(s):  
C Klein ◽  
CT Bock ◽  
H Wedemeyer ◽  
T Wüstefeld ◽  
S Locarnini ◽  
...  

2012 ◽  
Vol 23 (3) ◽  
pp. 278-285 ◽  
Author(s):  
Feng-Jun Liu ◽  
En-Qiang Chen ◽  
Qiao-Ling Zhou ◽  
Tao-You Zhou ◽  
Cong Liu ◽  
...  

1989 ◽  
Vol 29 (4) ◽  
pp. 244-248 ◽  
Author(s):  
Hideaki Haritani ◽  
Toshikazu Uchida ◽  
Yasunori Okuda ◽  
Toshio Shikata

2006 ◽  
Vol 80 (3) ◽  
pp. 1405-1413 ◽  
Author(s):  
Zongyi Hu ◽  
Zhensheng Zhang ◽  
Jin Woo Kim ◽  
Ying Huang ◽  
T. Jake Liang

ABSTRACT Hepatitis B virus X (HBX) is essential for the productive infection of hepatitis B virus (HBV) in vivo and has a pleiotropic effect on host cells. We have previously demonstrated that the proteasome complex is a cellular target of HBX, that HBX alters the proteolytic activity of proteasome in vitro, and that inhibition of proteasome leads to enhanced viral replication, suggesting that HBX and proteasome interaction plays a crucial role in the life cycle and pathogenesis of HBV. In the present study, we tested the effect of HBX on the proteasome activities in vivo in a transgenic mouse model in which HBX expression is developmentally regulated by the mouse major urinary promoter in the liver. In addition, microarray analysis was performed to examine the effect of HBX expression on the global gene expression profile of the liver. The results showed that the peptidase activities of the proteasome were reduced in the HBX transgenic mouse liver, whereas the activity of another cellular protease was elevated, suggesting a compensatory mechanism in protein degradation. In the microarray analysis, diverse genes were altered in the HBX mouse livers and the number of genes with significant changes increased progressively with age. Functional clustering showed that a number of genes involved in transcription and cell growth were significantly affected in the HBX mice, possibly accounting for the observed pleiotropic effect of HBX. In particular, insulin-like growth factor-binding protein 1 was down-regulated in the HBX mouse liver. The down-regulation was similarly observed during acute woodchuck hepatitis virus infection. Other changes including up-regulation of proteolysis-related genes may also contribute to the profound alterations of liver functions in HBV infection.


2013 ◽  
Vol 21 (10) ◽  
pp. 1889-1897 ◽  
Author(s):  
Kristie Bloom ◽  
Abdullah Ely ◽  
Claudio Mussolino ◽  
Toni Cathomen ◽  
Patrick Arbuthnot

Sign in / Sign up

Export Citation Format

Share Document