scholarly journals Identification of Genes That Confer Sediment Fitness to Desulfovibrio desulfuricans G20

2007 ◽  
Vol 73 (19) ◽  
pp. 6305-6312 ◽  
Author(s):  
Qingwei Luo ◽  
Jennifer L. Groh ◽  
Jimmy D. Ballard ◽  
Lee R. Krumholz

ABSTRACT Signature-tagged mutants of Desulfovibrio desulfuricans G20 were screened, and 97 genes crucial for sediment fitness were identified. These genes belong to functional categories including signal transduction, binding and transport, insertion elements, and others. Mutants with mutations in genes encoding proteins involved in amino acid biosynthesis, hydrogenase activity, and DNA repair were further characterized.

2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Meijuan Xu ◽  
Mi Tang ◽  
Jiamin Chen ◽  
Taowei Yang ◽  
Xian Zhang ◽  
...  

ABSTRACT PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum. Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria. IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum. Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.


1987 ◽  
Vol 208 (1-2) ◽  
pp. 159-167 ◽  
Author(s):  
Kiyoji Nishiwaki ◽  
Naoyuki Hayashi ◽  
Shinji Irie ◽  
Dong-Hyo Chung ◽  
Satoshi Harashima ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
Author(s):  
Xiuqin Zhong ◽  
Max Lundberg ◽  
Lars Råberg

Abstract Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.


2002 ◽  
Vol 99 (5) ◽  
pp. 2678-2683 ◽  
Author(s):  
B. Min ◽  
J. T. Pelaschier ◽  
D. E. Graham ◽  
D. Tumbula-Hansen ◽  
D. Soll

Sign in / Sign up

Export Citation Format

Share Document