n leaching
Recently Published Documents


TOTAL DOCUMENTS

454
(FIVE YEARS 118)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 324 ◽  
pp. 107714
Author(s):  
Santiago Tamagno ◽  
Alison J. Eagle ◽  
Eileen L. McLellan ◽  
Chris van Kessel ◽  
Bruce A. Linquist ◽  
...  

Nitrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 43-57
Author(s):  
Rhys Rebello ◽  
Paul J. Burgess ◽  
Nicholas T. Girkin

Tea (Camellia sinensis L.) is the most widely consumed beverage in the world. It is mostly grown in the tropics with a heavy dependence on mineral nitrogen (N) fertilisers to maintain high yields while minimising the areas under cultivation. However, N is often applied in excess of crop requirements, resulting in substantial adverse environmental impacts. We conducted a systematic literature review, synthesising the findings from 48 studies to assess the impacts of excessive N application on soil health, and identify sustainable, alternative forms of N management. High N applications lead to soil acidification, N leaching to surface and groundwater, and the emission of greenhouse gases including nitrous oxide (N2O). We identified a range of alternative N management practices, the use of organic fertilisers, a mixture of organic and inorganic fertilisers, controlled release fertilisers, nitrification inhibitors and soil amendments including biochar. While many practices result in reduced N loading or mitigate some adverse impacts, major trade-offs include lower yields, and in some instances increased N2O emissions. Practices are also frequently trialled in isolation, meaning there may be a missed opportunity from assessing synergistic effects. Moreover, adoption rates of alternatives are low due to a lack of knowledge amongst farmers, and/or financial barriers. The use of site-specific management practices which incorporate local factors (for example climate, tea variety, irrigation requirements, site slope, and fertiliser type) are therefore recommended to improve sustainable N management practices in the long term.


Author(s):  
Yao Wang ◽  
Meng Zhou ◽  
Meng Hou ◽  
Yimin Chen ◽  
Yueyu Sui ◽  
...  

Maintaining nitrogen (N) balance and inhibiting N leaching loss in the soil-crop system is crucial to maintaining yield and reducing the environmental pollution. This study investigated the effects of soil NO<sub>3</sub><sup>−</sup>-N content and accumulation, eggplant yield, N leaching and balance response to biochar addition, including regular fertilisation and irrigation (W + F), biochar addition with regular fertilisation and irrigation (W + F + B), and biochar addition with 20% fertilisation and irrigation reduction (0.8W + 0.8F + B) treatments. Compared with W + F, W + F + B and 0.8W + 0.8F + B increased soil NO<sub>3</sub><sup>−</sup>-N content in 0–40 cm and soil NO<sub>3</sub><sup>−</sup>-N accumulation in 0–20 cm, and raised harvest index, N surplus and balance. Simultaneously, 0.8W + 0.8F + B compared to W + F enhanced N use efficiency and N partial factor productivity, conversely, it decreased N dry matter production efficiency, N surplus and balance. Stepwise regression analysis demonstrated that the effect of NO<sub>3</sub><sup>−</sup>-N leaching lasted in 60 cm under biochar addition in the first year, and lasted in 20 cm without biochar application in the next year. Altogether, biochar addition with 20% fertilisation and irrigation reduction is the most suitable management strategy to decrease N surplus and leaching, and maintain eggplant N uptake in a two-year cycle system on greenhouse vegetables in Mollisols.  


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuyi Yang ◽  
Chao Zhang ◽  
Xiaoli Ma ◽  
Qianjin Liu ◽  
Juan An ◽  
...  

Soil deterioration, low nitrogen use efficiency (NUE), and environmental risks caused by excessive chemical N fertilizer use are key factors restricting sustainable agriculture. It is extremely critical to develop effective N management strategies that consider both environmental and agronomic benefits. From 2017 to 2019, a field experiment was conducted to assess the effects of combinations of organic fertilizers (OF, provided at 30, 50, and 70% of the total applied N) and controlled-release urea (CU) on the NUE, N leaching and wheat yield compared with the effects of urea and CU. The results suggested that OF released N slowly in the early stage and showed a significant residual effect, while CU released N quickly in the first 2 months. The OF substitutes with 30–50% CU increased wheat yield by 4.2–9.2%, while the 70%OF+30%CU treatment showed no significant difference relative to the urea treatment. The average maximum apparent NUE recovery (50.4%) was achieved under the 50%OF+50%CU treatment, but the partial factor productivity was not affected by the N type. As the OF application rate increased, the total carbon content increased, and the total N value decreased. The NO3−-N and NH4+-N concentrations in the OF+CU treatments were lower before the jointing stage but higher from the grain-filling to mature stages than those in the urea treatment. NO3−-N and NH4+-N were mainly concentrated in the 0–60-cm layer soil by OF substitution, and N leaching to the 60–100-cm soil layer was significantly reduced. Hence, the results suggest that the combination of 30–50% OF with CU synchronizes absorption with availability due to a period of increased N availability in soils and proved to be the best strategy for simultaneously increasing wheat production and reducing N leaching.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1798
Author(s):  
Piaopiao Ke ◽  
Gaoyue Si ◽  
Yao Luo ◽  
Zhenglin Cheng ◽  
Qian Yu ◽  
...  

Anthropogenic emissions of nitrogen- (N) and sulfur (S)-containing pollutants have declined across China in recent years. However, the responses of N and S depositions and dynamics in soil remain unclear in subtropical forests. In this study, the wet and throughfall depositions of dissolved inorganic N (DIN) and SO42− were continuously monitored in a mildly polluted subtropical forest in Southeast China in 2017 and 2018. Moreover, these solutes in soil water along the soil profile were monitored in 2018. Throughfall deposition of DIN and S decreased by 59% and 53% in recent 3 years, respectively, which can be majorly attributed to the decreases in wet depositions of NO3− and SO42−. Meanwhile, NH4+ deposition remained relatively stable at this site. Even though N deposition in 2018 was below the N saturation threshold for subtropical forests, significant N leaching still occurred. Excess export of N occurred in the upper soil layer (0–15 cm), reaching 6.86 ± 1.54 kg N/ha/yr, while the deeper soil (15–30 cm) was net sink of N as 8.29 ± 1.71 kg N/ha/yr. Similarly, S was excessively exported from the upper soil with net flux of 14.7 ± 3.15 kg S/ha/yr, while up to 6.37 ± 3.18 kg S/ha/yr of S was retained in the deeper soil. The significant N and S leaching under declined depositions suggested that this site possibly underwent a transition state, recovering from historically high acid deposition. Furthermore, the rainfall intensity remarkably regulated leaching and retention of SO42− and DIN at this site. The impacts of climate changes on N and S dynamics require further long-term monitoring in subtropical forests.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3568
Author(s):  
Markku Saastamoinen ◽  
Susanna Särkijärvi ◽  
Heli Suomala

Six Finnhorse mares were used in a digestibility trial, in which six typical horse diets were compared. The diets were: (A) haylage 100%; (B) hay 100%; (C) hay 70% and oats 30%; (D) hay 70% and soybean meal + oats 30%; (E) hay 70%, rapeseed meal + oats 30% and (F) hay 70 %, linseed meal + oats 30%. The trial was conducted according to an unbalanced 6 × 4 Latin square design with four 3-week experimental periods. The experimental period consisted of 17-day preliminary feeding which was followed by a 4-day total faecal and urine collection periods to evaluate N excretion. The digestibilities of DM (p < 0.001) and OM (p < 0.001) in the haylage-only diet were lower compared to the other diets. The supplemental protein feeds improved the diet digestibility of CP (p = 0.002) compared to a hay + oats diet. Furthermore, the DM (p = 0.019), OM (p = 0.006), and CP (p = 0.016) digestibilities of the soya-supplemented diet were better than those of the rapeseed- and linseed-supplemented diets. Faecal excretion was greater for haylage (19.3 kg fresh faeces and 3.6 kg DM/day) and hay (18.7 kg fresh faeces and 3.6 kg DM/day) diets (p < 0.001) compared with the other diets. Urine excretion was also greater for forage-only diets compared with diets including protein supplements. Horses excreted 14.0 L urine/day on haylage-only diet (p = 0.026) and 14.3 L/day on a hay-only diet (p = 0.003). Horses excreted more nitrogen in their urine than in dung. N excretion differed between the diets. Horses on a haylage-only diet excreted 51.6 g N in faeces /day and on hay-only diet 51.4 g N/day. On the other hand, when protein content in forages increased, N excretion via urine increased (haylage vs. dried hay). Horses excreted less N in urine with hay-only diet than with haylage-only or protein-supplemented diets (p < 0.001). When N excreted in faeces and urine was counted together, horses excreted less N with a hay-only diet (p < 0.001) than with a supplemented one (oats and/or protein feeds). The results showed that feed choices affected the amount of nitrogen excreted. Feeding recommendations should consider not only the horse category and work level, but also the protein source. When good quality protein is fed, smaller N intakes can be applied to reduce the N excretion via urine and dung. At the farm level, improved understanding of feed quality, as well as feeding planning and practices, is a way to decrease the risk of N leaching and evaporation.


2021 ◽  
Vol 194 (1) ◽  
Author(s):  
Hannah Wey ◽  
Daniel Hunkeler ◽  
Wolf-Anno Bischoff ◽  
Else K. Bünemann

AbstractDeterioration of groundwater quality due to nitrate loss from intensive agricultural systems can only be mitigated if methods for in-situ monitoring of nitrate leaching under active farmers’ fields are available. In this study, three methods were used in parallel to evaluate their spatial and temporal differences, namely ion-exchange resin-based Self-Integrating Accumulators (SIA), soil coring for extraction of mineral N (Nmin) from 0 to 90 cm in Mid-October (pre-winter) and Mid-February (post-winter), and Suction Cups (SCs) complemented by a HYDRUS 1D model. The monitoring, conducted from 2017 to 2020 in the Gäu Valley in the Swiss Central Plateau, covered four agricultural fields. The crop rotations included grass-clover leys, canola, silage maize and winter cereals. The monthly resolution of SC samples allowed identifying a seasonal pattern, with a nitrate concentration build-up during autumn and peaks in winter, caused by elevated water percolation to deeper soil layers in this period. Using simulated water percolation values, SC concentrations were converted into fluxes. SCs sampled 30% less N-losses on average compared to SIA, which collect also the wide macropore and preferential flows. The difference between Nmin content in autumn and spring was greater than nitrate leaching measured with either SIA or SCs. This observation indicates that autumn Nmin was depleted not only by leaching but also by plant and microbial N uptake and gaseous losses. The positive correlation between autumn Nmin content and leaching fluxes determined by either SCs or SIA suggests autumn Nmin as a useful relative but not absolute indicator for nitrate leaching. In conclusion, all three monitoring techniques are suited to indicate N leaching but represent different transport and cycling processes and vary in spatio-temporal resolution. The choice of monitoring method mainly depends (1) on the project’s goals and financial budget and (2) on the soil conditions. Long-term data, and especially the combination of methods, increase process understanding and generate knowledge beyond a pure methodological comparison.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1207
Author(s):  
Lian-Jie Wan ◽  
Yang Tian ◽  
Man He ◽  
Yong-Qiang Zheng ◽  
Qiang Lyu ◽  
...  

Chemical fertilizer has been excessively used for high yield of citrus around the world, especially in China; meanwhile, it deteriorates the citrus orchard soil environment. To resolve the conflict, the use of organic fertilizer provides a promising solution. However, the data about organic fertilizer used in citrus orchard is rarely available. Here, four treatments including CK (no fertilizer), CF (chemical fertilizer), OF + CF (chemical fertilizer reduction combined with organic fertilizer; application of N, P2O5, K2O fertilizer and organic fertilizer is 0.564, 0.236, 0.336 and 10 kg/plant), and BF + CF (chemical fertilizer reduction combined with bioorganic fertilizer; application of N, P2O5, K2O fertilizer and bioorganic fertilizer is 0.508, 0.320, 0.310 and 10 kg/plant) were performed in a ‘Ponkan’ (Citrus reticulata Blanco) orchard to evaluate the effect of organic fertilizer on citrus yield, growth, soil properties etc. when nutrients of fertilizer of each treatment were equal except CK. The data obtained in 2019 and 2020 showed that both OF + CF and BF + CF were beneficial to improve soil fertility (soil physicochemical and microbe properties) and citrus growth physiology (growth, nutrient and photosynthesis), alleviate NO3−-N leaching, and promote yields. Comprehensive evaluation indicated that BF + CF was more effective than OF + CF. Together, organic fertilizer has the potential to substitute partial chemical fertilizer with improvement in soil properties, growth physiology, and yield of citrus.


Author(s):  
Ciaran Harris ◽  
Francis L. W. Ratnieks

AbstractConcerns over the increasing cost and environmental impact of high inorganic nitrogen (N) inputs have led to a reappraisal of the role of legumes, particularly clover, in maintaining soil fertility in improved grasslands. Clover and other legumes host the symbiotic root bacteria Rhizobium that fix N, reducing the need for N fertiliser application. Grass plus clover swards are comparable to grass monocultures given medium to high inorganic N inputs in terms of companion grass growth, livestock performance and, yield of subsequently planted crops. Reduced N fertiliser input also reduces associated N leaching into water and greenhouse gas emissions during manufacture, transport, and application. In addition, increased use of clover in grasslands also benefit flower-visiting insects by providing an abundant source of nectar and pollen in summer. This is a critical period due to high levels of competition for these in summer. Because temporary and improved grassland covers almost half (47%) of UK land area this habitat type has great potential in wildlife conservation. Further research is needed on the agronomic and conservation benefits of more diverse swards, as incorporation of additional forb species may complement clovers and legumes to benefit a wider range of flower-visiting insect species. In addition, more information on the attitudes of farmers for or against using clover and legumes in grasslands is needed, as they make the management decisions for most agricultural land in the UK. Implications for insect conservation: increased use of clover is a low-cost way to improve the food supply for flower-visiting insects, while to sustaining agricultural productivity and reducing environmental impact.


Sign in / Sign up

Export Citation Format

Share Document