scholarly journals A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity

2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Tomas Buryska ◽  
Petra Babkova ◽  
Ondrej Vavra ◽  
Jiri Damborsky ◽  
Zbynek Prokop

ABSTRACTThe haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications.IMPORTANCEWe present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols.

2014 ◽  
Vol 59 (3) ◽  
pp. 1755-1758 ◽  
Author(s):  
Luisa Borgianni ◽  
Filomena De Luca ◽  
Maria Cristina Thaller ◽  
Yunsop Chong ◽  
Gian Maria Rossolini ◽  
...  

ABSTRACTThe POM-1 metallo-β-lactamase is a subclass B3 resident enzyme produced byPseudomonas otitidis, a pathogen causing otic infections. The enzyme was overproduced inEscherichia coliBL21(DE3), purified by chromatography, and subjected to structural and functional analysis. The purified POM-1 is a tetrameric enzyme of broad substrate specificity with higher catalytic activities with penicillins and carbapenems than with cephalosporins.


Biologia ◽  
2011 ◽  
Vol 66 (1) ◽  
Author(s):  
Dessy Natalia ◽  
Keni Vidilaseris ◽  
Pasjan Satrimafitrah ◽  
Wangsa Ismaya ◽  
Purkan ◽  
...  

AbstractGlucoamylase from the yeast Saccharomycopsis fibuligera R64 (GLL1) has successfully been purified and characterized. The molecular mass of the enzyme was 56,583 Da as determined by mass spectrometry. The purified enzyme demonstrated optimum activity in the pH range of 5.6–6.4 and at 50°C. The activity of the enzyme was inhibited by acarbose with the IC50 value of 5 μM. GLL1 shares high amino acid sequence identity with GLU1 and GLA1, which are Saccharomycopsis fibuligera glucoamylases from the strains HUT7212 and KZ, respectively. The properties of GLL1, however, resemble that of GLU1. The elucidation of the primary structure of GLL1 contributes to the explanation of this finding.


2002 ◽  
Vol 277 (26) ◽  
pp. 23236-23245 ◽  
Author(s):  
Robert M. Brosh ◽  
Juwaria Waheed ◽  
Joshua A. Sommers

Author(s):  
Jolanta Cieślak ◽  
Akimasa Miyanaga ◽  
Makoto Takaishi ◽  
Fumitaka Kudo ◽  
Tadashi Eguchi

Adenylation enzymes play an important role in the selective incorporation of the cognate carboxylate substrates in natural product biosynthesis. Here, the biochemical and structural characterization of the adenylation enzyme IdnL7, which is involved in the biosynthesis of the macrolactam polyketide antibiotic incednine, is reported. Biochemical analysis showed that IdnL7 selects and activates several small amino acids. The structure of IdnL7 in complex with an L-alanyl-adenylate intermediate mimic, 5′-O-[N-(L-alanyl)sulfamoyl]adenosine, was determined at 2.1 Å resolution. The structure of IdnL7 explains the broad substrate specificity of IdnL7 towards small L-amino acids.


Sign in / Sign up

Export Citation Format

Share Document