scholarly journals Functional and structural characterization of IdnL7, an adenylation enzyme involved in incednine biosynthesis

Author(s):  
Jolanta Cieślak ◽  
Akimasa Miyanaga ◽  
Makoto Takaishi ◽  
Fumitaka Kudo ◽  
Tadashi Eguchi

Adenylation enzymes play an important role in the selective incorporation of the cognate carboxylate substrates in natural product biosynthesis. Here, the biochemical and structural characterization of the adenylation enzyme IdnL7, which is involved in the biosynthesis of the macrolactam polyketide antibiotic incednine, is reported. Biochemical analysis showed that IdnL7 selects and activates several small amino acids. The structure of IdnL7 in complex with an L-alanyl-adenylate intermediate mimic, 5′-O-[N-(L-alanyl)sulfamoyl]adenosine, was determined at 2.1 Å resolution. The structure of IdnL7 explains the broad substrate specificity of IdnL7 towards small L-amino acids.

2007 ◽  
Vol 282 (44) ◽  
pp. 32397-32405 ◽  
Author(s):  
Fabrice Neiers ◽  
Sanjiv Sonkaria ◽  
Alexandre Olry ◽  
Sandrine Boschi-Muller ◽  
Guy Branlant

2015 ◽  
Vol 39 (5) ◽  
pp. 3319-3326 ◽  
Author(s):  
Madhusudana M. B. Reddy ◽  
K. Basuroy ◽  
S. Chandrappa ◽  
B. Dinesh ◽  
B. Vasantha ◽  
...  

γn amino acid residues can be incorporated into structures in γn and hybrid sequences containing folded and extended α and δ residues.


2011 ◽  
Vol 17 (46) ◽  
pp. 12834-12834
Author(s):  
Sunil K. Pandey ◽  
Ganesh F. Jogdand ◽  
João C. A. Oliveira ◽  
Ricardo A. Mata ◽  
Pattuparambil R. Rajamohanan ◽  
...  

2012 ◽  
Vol 2012 (13) ◽  
pp. 2656-2663 ◽  
Author(s):  
Awadut G. Giri ◽  
Ganesh F. Jogdand ◽  
Pattuparampil R. Rajamohanan ◽  
Sunil K. Pandey ◽  
Chepuri V. Ramana

2004 ◽  
Vol 279 (44) ◽  
pp. 45728-45736 ◽  
Author(s):  
Toshihisa Kotake ◽  
Daisuke Yamaguchi ◽  
Hiroshi Ohzono ◽  
Sachiko Hojo ◽  
Satoshi Kaneko ◽  
...  

UDP-sugars, activated forms of monosaccharides, are synthesized throughde novoand salvage pathways and serve as substrates for the synthesis of polysaccharides, glycolipids, and glycoproteins in higher plants. A UDP-sugar pyrophosphorylase, designated PsUSP, was purified about 1,200-fold from pea (Pisum sativumL.) sprouts by conventional chromatography. The apparent molecular mass of the purified PsUSP was 67,000 Da. The enzyme catalyzed the formation of UDP-Glc, UDP-Gal, UDP-glucuronic acid, UDP-l-arabinose, and UDP-xylose from respective monosaccharide 1-phosphates in the presence of UTP as a co-substrate, indicating that the enzyme has broad substrate specificity toward monosaccharide 1-phosphates. Maximum activity of the enzyme occurred at pH 6.5–7.5, and at 45 °C in the presence of 2 mmMg2+. The apparentKmvalues for Glc 1-phosphate andl-arabinose 1-phosphate were 0.34 and 0.96 mm, respectively.PsUSPcDNA was cloned by reverse transcriptase-PCR.PsUSPappears to encode a protein with a molecular mass of 66,040 Da (600 amino acids) and possesses a uridine-binding site, which has also been found in a human UDP-N-acetylhexosamine pyrophosphorylase. Phylogenetic analysis revealed that PsUSP can be categorized in a group together with homologues fromArabidopsisand rice, which is distinct from the UDP-Glc and UDP-N-acetylhexosamine pyrophosphorylase groups. Recombinant PsUSP expressed inEscherichia colicatalyzed the formation of UDP-sugars from monosaccharide 1-phosphates and UTP with efficiency similar to that of the native enzyme. These results indicate that the enzyme is a novel type of UDP-sugar pyrophosphorylase, which catalyzes the formation of various UDP-sugars at the end of salvage pathways in higher plants.


Sign in / Sign up

Export Citation Format

Share Document