scholarly journals Integrated Bioprocessing for the pH-Dependent Production of 4-Valerolactone from Levulinate in Pseudomonas putida KT2440

2009 ◽  
Vol 76 (2) ◽  
pp. 417-424 ◽  
Author(s):  
Collin H. Martin ◽  
Danyi Wu ◽  
Kristala L. Jones Prather

ABSTRACT Enzymes are powerful biocatalysts capable of performing specific chemical transformations under mild conditions, yet as catalysts they remain subject to the laws of thermodynamics, namely, that they cannot catalyze chemical reactions beyond equilibrium. Here we report the phenomenon and application of using extracytosolic enzymes and medium conditions, such as pH, to catalyze metabolic pathways beyond their intracellular catalytic limitations. This methodology, termed “integrated bioprocessing” because it integrates intracellular and extracytosolic catalysis, was applied to a lactonization reaction in Pseudomonas putida for the economical and high-titer biosynthesis of 4-valerolactone from the inexpensive and renewable source levulinic acid. Mutant paraoxonase I (PON1) was expressed in P. putida, shown to export from the cytosol in Escherichia coli and P. putida using an N-terminal sequence, and demonstrated to catalyze the extracytosolic and pH-dependent lactonization of 4-hydroxyvalerate to 4-valerolactone. With this production system, the titer of 4-valerolactone was enhanced substantially in acidic medium using extracytosolically expressed lactonase versus an intracellular lactonase: from <0.2 g liter−1 to 2.1 ± 0.4 g liter−1 at the shake flask scale. Based on these results, the production of 4-hydroxyvalerate and 4-valerolactone was examined in a 2-liter bioreactor, and titers of 27.1 g liter−1 and 8.2 g liter−1 for the two respective compounds were achieved. These results illustrate the utility of integrated bioprocessing as a strategy for enabling production from novel metabolic pathways and enhancing product titers.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1315
Author(s):  
Iván Vallés ◽  
Lucas Santos-Juanes ◽  
Ana M. Amat ◽  
Javier Moreno-Andrés ◽  
Antonio Arques

In the present work, the treatment of a mixture of six emerging pollutants (acetamiprid, acetaminophen, caffeine, amoxicillin, clofibric acid and carbamazepine) by means of photo-Fenton process has been studied, using simulated sunlight as an irradiation source. Removal of these pollutants has been investigated in three different aqueous matrices distinguished by the amount of chlorides (distilled water, 1 g L−1 of NaCl and 30 g L−1 of NaCl) at a pH of 2.8 and 5.0. Interestingly, the presence of 1 g L−1 was able to slightly accelerate the pollutants removal at pH = 5, although the reverse was true at pH = 2.8. This is attributed to the pH-dependent interference of chlorides on photo-Fenton process, that is more acute in an acidic medium. As a matter of fact, the fastest reaction was obtained at pH = 3.5, in agreement with literature results. Monitoring of hydrogen peroxide consumption and iron in solution indicates that interference with chlorides is due to changes in the interaction between iron and the peroxide, rather than a scavenging effect of chloride for hydroxyl radicals. Experiments were also carried out with real seawater and showed higher inhibition than in the NaCl experiments, probably due to the effect of different dissolved salts present in natural water.


Synthesis ◽  
2020 ◽  
Author(s):  
Jia-Jia Zhao ◽  
Hong-Hao Zhang ◽  
Shouyun Yu

Visible light photoredox catalysis has recently emerged as a powerful tool for the development of new and valuable chemical transformations under mild conditions. Visible-light promoted enantioselective radical transformations of imines and iminium intermediates provide new opportunities for the asymmetric synthesis of amines and asymmetric β-functionalization of unsaturated carbonyl compounds. In this review, the advance in the catalytic asymmetric radical functionalization of imines, as well as iminium intermediates, are summarized. 1 Introduction 2 The enantioselective radical functionalization of imines 2.1 Asymmetric reduction 2.2 Asymmetric cyclization 2.3 Asymmetric addition 2.4 Asymmetric radical coupling 3 The enantioselective radical functionalization of iminium ions 3.1 Asymmetric radical alkylation 3.2 Asymmetric radical acylation 4 Conclusion


2019 ◽  
Vol 218 ◽  
pp. 1-11 ◽  
Author(s):  
Huizhong Liu ◽  
Huaduo Yan ◽  
Yujie Xiao ◽  
Hailing Nie ◽  
Qiaoyun Huang ◽  
...  

2017 ◽  
Vol 4 ◽  
pp. 22-28 ◽  
Author(s):  
Michael T. Guarnieri ◽  
Mary Ann Franden ◽  
Christopher W. Johnson ◽  
Gregg T. Beckham

Sign in / Sign up

Export Citation Format

Share Document