scholarly journals Diversity of Bacteria and Glycosyl Hydrolase Family 48 Genes in Cellulolytic Consortia Enriched from Thermophilic Biocompost

2010 ◽  
Vol 76 (11) ◽  
pp. 3545-3553 ◽  
Author(s):  
Javier A. Izquierdo ◽  
Maria V. Sizova ◽  
Lee R. Lynd

ABSTRACT The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with minor representation of clostridial clusters I and XIV and a novel Lutispora species cluster. Our studies reveal different levels of 16S rRNA gene diversity, ranging from 3 to 18 operational taxonomic units (OTUs), as well as variability in community membership across the three enrichment cultures. By comparison, glycosyl hydrolase family 48 (GHF48) diversity analyses revealed a narrower breadth of novel clostridial genes associated with cultured and uncultured cellulose degraders. The novel GHF48 genes identified in this study were related to the novel clostridia Clostridium straminisolvens and Clostridium clariflavum, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured species.

2005 ◽  
Vol 71 (9) ◽  
pp. 5138-5144 ◽  
Author(s):  
ChoongSoo Yun ◽  
Daiki Amakata ◽  
Yasuhiro Matsuo ◽  
Hideyuki Matsuda ◽  
Makoto Kawamukai

ABSTRACT The betaproteobacterium Mitsuaria chitosanitabida (formerly Matsuebacter chitosanotabidus) 3001 produces a chitosanase (ChoA) that is classified in glycosyl hydrolase family 80. While many chitosanase genes have been isolated from various bacteria to date, they show limited homology to the M. chitosanitabida 3001 chitosanase gene (choA). To investigate the phylogenetic distribution of chitosanases analogous to ChoA in nature, we identified 67 chitosan-degrading strains by screening and investigated their physiological and biological characteristics. We then searched for similarities to ChoA by Western blotting and Southern hybridization and selected 11 strains whose chitosanases showed the most similarity to ChoA. PCR amplification and sequencing of the chitosanase genes from these strains revealed high deduced amino acid sequence similarities to ChoA ranging from 77% to 99%. Analysis of the 16S rRNA gene sequences of the 11 selected strains indicated that they are widely distributed in the β and γ subclasses of Proteobacteria and the Flavobacterium group. These observations suggest that the ChoA-like chitosanases that belong to family 80 occur widely in a broad variety of bacteria.


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


2007 ◽  
Vol 57 (8) ◽  
pp. 1901-1905 ◽  
Author(s):  
Yu-Qin Zhang ◽  
Li-Yan Yu ◽  
Hong-Yu Liu ◽  
Yue-Qin Zhang ◽  
Li-Hua Xu ◽  
...  

A moderately halophilic bacterium, strain YIM 70202T, was isolated from a desert soil sample collected from Egypt and was subjected to a taxonomic investigation. In a phylogenetic dendrogram based on 16S rRNA gene sequence analysis, strain YIM 70202T was affiliated to the Salinicoccus clade, showing 94.5–96.8 % 16S rRNA gene sequence similarity to the recognized species of the genus Salinicoccus, in which Salinicoccus roseus CCM 3516T was the nearest neighbour. The DNA–DNA relatedness value of the novel isolate with S. roseus CCM 3516T was 12.7 %. The novel isolate grew at temperatures between 4 and 45 °C and at pH values ranging from 7.0 to 11.0, with an optimum of 30 °C and pH 8.0–9.0, respectively. Strain YIM 70202T grew optimally in the presence of 10 % NaCl (w/v) and growth was observed at NaCl concentrations in the range 1–25 % (w/v). Chemotaxonomic data revealed that strain YIM 70202T contained MK-6 as the predominant respiratory quinone, possessed l-Lys–Gly5 as the cell-wall peptidoglycan, had phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid as the polar lipids and contained i-C15 : 0 and ai-C15 : 0 as the predominant fatty acids. The DNA G+C content was 49.7 mol%. The biochemical and chemotaxonomic properties demonstrate that strain YIM 70202T represents a novel species of the genus Salinicoccus. The name Salinicoccus luteus sp. nov. is proposed with strain YIM 70202T (=CGMCC 1.6511T=KCTC 3941T) as the type strain.


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


2012 ◽  
Vol 62 (2) ◽  
pp. 322-329 ◽  
Author(s):  
William J. Wolfgang ◽  
An Coorevits ◽  
Jocelyn A. Cole ◽  
Paul De Vos ◽  
Michelle C. Dickinson ◽  
...  

Twelve independent isolates of a Gram-positive, endospore-forming rod were recovered from clinical specimens in New York State, USA, and from raw milk in Flanders, Belgium. The 16S rRNA gene sequences for all isolates were identical. The closest species with a validly published name, based on 16S rRNA gene sequence, is Sporosarcina koreensis (97.13 % similarity). DNA–DNA hybridization studies demonstrate that the new isolates belong to a species distinct from their nearest phylogenetic neighbours. The partial sequences of the 23S rRNA gene for the novel strains and their nearest neighbours also provide support for the novel species designation. Maximum-likelihood phylogenetic analysis of the 16S rRNA gene sequences confirmed that the new isolates are in the genus Sporosarcina. The predominant menaquinone is MK-7, the peptidoglycan has the type A4α l-Lys–Gly–d-Glu, and the polar lipids consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant fatty acids are iso-C14 : 0, iso-C15 : 0 and anteiso-C15 : 0. In addition, biochemical and morphological analyses support designation of the twelve isolates as representatives of a single new species within the genus Sporosarcina, for which the name Sporosarcina newyorkensis sp. nov. (type strain 6062T  = DSM 23544T  = CCUG 59649T  = LMG 26022T) is proposed.


2004 ◽  
Vol 70 (6) ◽  
pp. 3724-3732 ◽  
Author(s):  
Lars Fieseler ◽  
Matthias Horn ◽  
Michael Wagner ◽  
Ute Hentschel

ABSTRACT Marine sponges (Porifera) harbor large amounts of commensal microbial communities within the sponge mesohyl. We employed 16S rRNA gene library construction using specific PCR primers to provide insights into the phylogenetic identity of an abundant sponge-associated bacterium that is morphologically characterized by the presence of a membrane-bound nucleoid. In this study, we report the presence of a previously unrecognized evolutionary lineage branching deeply in the domain Bacteria that is moderately related to the Planctomycetes, Verrucomicrobia, and Chlamydia lines of decent. Because members of this lineage showed <75% 16S rRNA gene sequence similarity to known bacterial phyla, we suggest the status of a new candidate phylum, named “Poribacteria”, to acknowledge the affiliation of the new bacterium with sponges. The affiliation of the morphologically conspicuous sponge bacterium with the novel phylogenetic lineage was confirmed by fluorescence in situ hybridization with newly designed probes targeting different sites of the poribacterial 16S rRNA. Consistent with electron microscopic observations of cell compartmentalization, the fluorescence signals appeared in a ring-shaped manner. PCR screening with “Poribacteria”-specific primers gave positive results for several other sponge species, while samples taken from the environment (seawater, sediments, and a filter-feeding tunicate) were PCR negative. In addition to a report for Planctomycetes, this is the second report of cell compartmentalization, a feature that was considered exclusive to the eukaryotic domain, in prokaryotes.


2007 ◽  
Vol 57 (9) ◽  
pp. 2102-2105 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Marinobacter-like bacterial strain, ISL-40T, was isolated from a marine solar saltern of the Yellow Sea in Korea. The taxonomic position of the novel strain was investigated using a polyphasic approach. Strain ISL-40T grew optimally at pH 7.0–8.0 and at 30 °C. It contained Q-9 as the predominant ubiquinone. The major fatty acids were C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The DNA G+C content was 58.1 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-40T belongs to the genus Marinobacter. Strain ISL-40T exhibited 16S rRNA gene sequence similarity values of 93.5–96.4 % to the type strains of recognized Marinobacter species. The differential phenotypic properties and phylogenetic distinctiveness of strain ISL-40T revealed that it is separate from recognized Marinobacter species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-40T represents a novel species of the genus Marinobacter, for which the name Marinobacter salicampi sp. nov. is proposed. The type strain is ISL-40T (=KCTC 12972T=CCUG 54357T).


2006 ◽  
Vol 56 (10) ◽  
pp. 2391-2396 ◽  
Author(s):  
Soon Dong Lee

A novel actinomycete, strain KST3-10T, was isolated from sand sediment of a beach in Jeju, Korea, and was subjected to polyphasic taxonomic characterization. The organism produced circular, smooth, translucent, apricot-coloured colonies comprising coccoid- or rod-shaped cells. Phylogenetic analyses based on 16S rRNA gene sequences showed that the organism belonged to the family Geodermatophilaceae and consistently formed a distinct sub-branch outside the radiation of the genus Blastococcus. The organism showed 16S rRNA gene sequence similarity values of 98.2 % with respect to Blastococcus aggregatus DSM 4725T and 98.1 % with respect to Blastococcus saxobsidens BC444T. The type strains of the two Blastococcus species shared 98.2 % sequence similarity with respect to each other, whereas the levels of sequence similarity between the novel organism and the type strains of the less closely related neighbours, Modestobacter multiseptatus and Geodermatophilus obscurus, were in the range 96.2–96.9 %. The physiological, biochemical and chemotaxonomic data revealed that the novel organism can be readily differentiated from members of the genus Blastococcus and that it merits separate species status. On the basis of the phenotypic and genotypic evidence, strain KST3-10T represents a novel species of the genus Blastococcus, for which the name Blastococcus jejuensis sp. nov. is proposed. The type strain is KST3-10T (=NRRL B-24440T=KCCM 42251T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Pok Yui Lai ◽  
Li Miao ◽  
On On Lee ◽  
Ling-Li Liu ◽  
Xiao-Jian Zhou ◽  
...  

A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20–25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18 : 1ω6c and/or C18 : 1ω7c, C18 : 1ω7c 11-methyl and C16 : 1ω7c and/or C16 : 1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius . The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae , for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T ( = JCM 17872T  = NRRL B-59665T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document