scholarly journals Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus

2019 ◽  
Vol 85 (10) ◽  
Author(s):  
Tao Wang ◽  
Zhaomo Tian ◽  
Anders Tunlid ◽  
Per Persson

ABSTRACT The interactions between dissolved organic matter (DOM) and mineral particles are critical for the stabilization of soil organic matter (SOM) in terrestrial ecosystems. The processing of DOM by ectomycorrhizal fungi contributes to the formation of mineral-stabilized SOM by two contrasting pathways: the extracellular transformation of DOM (ex vivo pathway) and the secretion of mineral-surface-reactive metabolites (in vivo pathway). In this study, we examined how changes in nitrogen (N) availability affected the formation of mineral-associated carbon (C) from these two pathways. DOM was extracted from forest soils. The processing of this DOM by the ectomycorrhizal fungus Paxillus involutus was examined in laboratory-scale studies with different levels of ammonium. At low levels of ammonium (i.e., under N-limited conditions), the DOM components were slightly oxidized, and fungal C metabolites with iron-reducing activity were secreted. Ammonium amendments decreased the amount of C metabolites, and no additional oxidation of the organic matter was detected. In contrast, the hydrolytic activity and the secretion of N-containing compounds increased, particularly when high levels of ammonium were added. Under these conditions, C, but not N, limited fungal growth. Although the overall production of mineral-associated organic C was not affected by ammonium concentrations, the observed shifts in the activities of the ex vivo and in vivo pathways affected the composition of organic matter adsorbed onto the mineral particles. Such changes will affect the properties of organic matter-mineral associations and, thus, ultimately, the stabilization of SOM. IMPORTANCE Nitrogen (N) availability plays a critical role in the cycling and storage of soil organic matter (SOM). However, large uncertainties remain in predicting the net effect of N addition on soil organic carbon (C) storage due to the complex interactions between organic matter, microbial activity, and mineral particles that determine the formation of stable SOM. Here, we attempted to disentangle the effects of ammonium on these interactions in controlled microcosm experiments including the ectomycorrhizal fungus P.involutus and dissolved organic matter extracted from forest soils. Increased ammonium levels affected the fungal processing of the organic material as well as the secretion of extracellular metabolites. Although ammonium additions did not increase the net production of mineral-adsorbed C, changes in the decomposition and secretion pathways altered the composition of the adsorbed organic matter. These changes may influence the properties of the organic matter-mineral associations and, thus, the stabilization of SOM.

2021 ◽  
Vol 770 ◽  
pp. 145307
Author(s):  
Mohammad Bahadori ◽  
Chengrong Chen ◽  
Stephen Lewis ◽  
Sue Boyd ◽  
Mehran Rezaei Rashti ◽  
...  

2013 ◽  
Vol 37 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Adriana Rodolfo da Costa ◽  
Juliana Hiromi Sato ◽  
Maria Lucrécia Gerosa Ramos ◽  
Cícero Célio de Figueiredo ◽  
Géssica Pereira de Souza ◽  
...  

Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P) applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting), two irrigation regimes (rainfed and year-round irrigation), with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC), basal respiration (BR), enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4), and total organic carbon (TOC). The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.


2016 ◽  
Vol 60 (11) ◽  
pp. 6859-6866 ◽  
Author(s):  
Zi Wei Chang ◽  
Benoit Malleret ◽  
Bruce Russell ◽  
Laurent Rénia ◽  
Carla Claser

ABSTRACTEx vivoassay systems provide a powerful approach to studying human malaria parasite biology and to testing antimalarials. For rodent malaria parasites, short-termin vitroculture andex vivoantimalarial susceptibility assays are relatively cumbersome, relying onin vivopassage for synchronization, since ring-stage parasites are an essential starting material. Here, we describe a new approach based on the enrichment of ring-stagePlasmodium berghei,P. yoelii, andP. vinckei vinckeiusing a single-step Percoll gradient. Importantly, we demonstrate that the enriched ring-stage parasites develop synchronously regardless of the parasite strain or species used. Using a flow cytometry assay with Hoechst and ethidium or MitoTracker dye, we show that parasite development is easily and rapidly monitored. Finally, we demonstrate that this approach can be used to screen antimalarial drugs.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Payal Joglekar ◽  
Hua Ding ◽  
Pablo Canales-Herrerias ◽  
Pankaj Jay Pasricha ◽  
Justin L. Sonnenburg ◽  
...  

ABSTRACT Gut-derived immunoglobulin A (IgA) is the most abundant antibody secreted in the gut that shapes gut microbiota composition and functionality. However, most of the microbial antigens targeted by gut IgA remain unknown, and the functional effects of IgA targeting these antigens are currently understudied. This study provides a framework for identifying and characterizing gut microbiota antigens targeted by gut IgA. We developed a small intestinal ex vivo culture assay to harvest lamina propria IgA from gnotobiotic mice, with the aim of identifying antigenic targets in a model human gut commensal, Bacteroides thetaiotaomicron VPI-5482. Colonization by B. thetaiotaomicron induced a microbe-specific IgA response that was reactive against diverse antigens, including capsular polysaccharides, lipopolysaccharides, and proteins. IgA against microbial protein antigens targeted membrane and secreted proteins with diverse functionalities, including an IgA specific against proteins of the polysaccharide utilization locus (PUL) that are necessary for utilization of fructan, which is an important dietary polysaccharide. Further analyses demonstrated that the presence of dietary fructan increased the production of fructan PUL-specific IgA, which then downregulated the expression of fructan PUL in B. thetaiotaomicron, both in vivo and in vitro. Since the expression of fructan PUL has been associated with the ability of B. thetaiotaomicron to colonize the gut in the presence of dietary fructans, our work suggests a novel role for gut IgA in regulating microbial colonization by modulating their metabolism. IMPORTANCE Given the significant impact that gut microbes have on our health, it is essential to identify key host and environmental factors that shape this diverse community. While many studies have highlighted the impact of diet on gut microbiota, little is known about how the host regulates this critical diet-microbiota interaction. In our present study, we discovered that gut IgA targeted a protein complex involved in the utilization of an important dietary polysaccharide: fructan. While the presence of dietary fructans was previously thought to allow unrestricted growth of fructan-utilizing bacteria, our work shows that gut IgA, by targeting proteins responsible for fructan utilization, provides the host with tools that can restrict the microbial utilization of such polysaccharides, thereby controlling their growth.


2017 ◽  
Vol 30 (1) ◽  
pp. 24-31 ◽  
Author(s):  
JOSÉ DE SOUZA OLIVEIRA FILHO ◽  
◽  
MARCOS GERVASIO PEREIRA ◽  
BOANERGES FREIRE DE AQUINO ◽  

ABSTRACT The permanence of sugarcane straw on the soil surface, in systems without the pre-harvest straw burning practice, directly affects the soil organic matter dynamics. The objective of this work was to evaluate the changes in total organic carbon (TOC), carbon in the light organic matter (CLOM) and particulate organic carbon (POC), and their carbon stocks in a typic Quartzipsamment cultivated for nine years with sugarcane crops, which were conducted without the pre-harvest straw burning practice, in Paraipaba, State of Ceará, Brazil. Disturbed and undisturbed soil samples were collected at depths of 0.0-0.025, 0.025-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.30 m, in the sugarcane crop area and in an adjacent native forest area, in order to quantify the TOC, CLOM and POC, as well as the carbon stocks accumulated in the layer 0.0-0.30 m related to these fractions (TOCSt, CLOMSt and POCSt). TOC content changes after nine years of sugarcane crops, conducted without pre-harvest straw burning, were found only in the layers 0.10-0.20 and 0.20-0.30 m. The CLOM varied only in the layer 0.025-0.05 m. The POC content changes were more noticeable than the changes in TOC and CMOL. The CLOM of the sugarcane crop area presented high similarity with TOC, which may affect their quantification in studies related to the soil organic matter dynamics. The sugarcane crop increased the TOCSt, POCSt and CLOMSt in the layer 0.0-0.30 m, compared with the adjacent native forest area.


Soil Research ◽  
2012 ◽  
Vol 50 (8) ◽  
pp. 685 ◽  
Author(s):  
Arcângelo Loss ◽  
Marcos Gervasio Pereira ◽  
Adriano Perin ◽  
Fernando Silva Coutinho ◽  
Lúcia Helena Cunha dos Anjos

The combination of the no-till planting system (NTS) and pasture (e.g. brachiaria grass, Urochloa sp.) for livestock production constitutes a crop–livestock integration (CLI) system. CLI systems significantly increase the total organic carbon (TOC) content of soil and the particulate organic carbon (POC) of soil organic matter (SOM). The present study evaluated TOC and the granulometric fractions of SOM under different management systems in a Cerrado area in the state of Goiás. Two areas applying crop rotation were evaluated, one using CLI (corn/brachiaria grass/bean/cotton/soybean planted sequentially) and the other NTS (sunflower/pearl millet/soybean/corn planted sequentially). A third area covered with natural Cerrado vegetation (Cerradão) served as a reference to determine original soil conditions. Soil was randomly sampled at 0–5, 5–10, 10–20, and 20–40 cm. The TOC, POC, and mineral-associated organic carbon (MOC) were assessed, and POC and MOC stocks calculated. The CLI system resulted in greater TOC levels than NTS (0–5, 5–10, and 10–20 cm). Compared with the Cerradão, CLI areas exhibited higher stocks of TOC (at 5–10 and 10–20 cm) and POC (at 0–40 cm). Results obtained for TOC and POC fractions show that land management with CLI was more efficient in increasing SOM than NTS. Moreover, when compared with NTS, the CLI system provided better POC stratification.


2015 ◽  
Vol 59 (8) ◽  
pp. 4653-4661 ◽  
Author(s):  
Amanda Fortes Francisco ◽  
Michael D. Lewis ◽  
Shiromani Jayawardhana ◽  
Martin C. Taylor ◽  
Eric Chatelain ◽  
...  

ABSTRACTThe antifungal drug posaconazole has shown significant activity againstTrypanosoma cruziin vitroand in experimental murine models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when parasite burden is extremely low and tissue distribution is ill defined. To better assess posaconazole efficacy against acute and chronic Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy than other methods, including PCR-based approaches. Mice inoculated with bioluminescentT. cruziwere assessed byin vivoandex vivoimaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posaconazole was found to be significantly inferior to benznidazole as a treatment for both acute and chronicT. cruziinfections. Whereas 20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treatment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the absence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudescence in mice treated with posaconazole in the acute, but not the chronic stage of infection. Thisin vivoscreening model for Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that drugs are not advanced prematurely into clinical trial.


Sign in / Sign up

Export Citation Format

Share Document