scholarly journals Direct and Indirect Influence of Parental Bedrock on Streambed Microbial Community Structure in Forested Streams

2011 ◽  
Vol 77 (21) ◽  
pp. 7681-7688 ◽  
Author(s):  
Jennifer J. Mosher ◽  
Robert H. Findlay

ABSTRACTA correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophylla), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sadikshya R. Dangi ◽  
James S. Gerik ◽  
Rebecca Tirado-Corbalá ◽  
Husein Ajwa

Producers of several high-value crops in California rely heavily on soil fumigants to control key diseases, nematodes, and weeds. Fumigants with broad biocidal activity can affect both target and nontarget soil microorganisms. The ability of nontarget soil microorganisms to recover after fumigation treatment is critical because they play an important role in sustaining the health of agricultural and natural soil systems. Fumigation trial was conducted in Parlier, CA, and the study focuses on the effects of different rates of Telone C35 and also methyl bromide fumigation with polyethylene (PE) and totally impermeable film (TIF) tarps on target and nontarget soil microorganisms using field samples. Results indicated that the populations of target organisms, such asFusarium oxysporumandPythiumspp., were reduced at all rates of fumigants. Phospholipid fatty acid (PLFA) analysis indicated that all major nontarget soil microbial groups such as Gram positive bacteria, Gram negative bacteria, fungi, and arbuscular mycorrhizal fungi (AMF) were affected by methyl bromide (MeBr) fumigation treatment. In general, the effects of Telone C35 (299 L/ha) under PE tarp had the least impact on microbial community structure and better effect on controlling target microorganisms and, therefore, indicated the better option among fumigation treatments.


2014 ◽  
Vol 675-677 ◽  
pp. 82-85
Author(s):  
Dong Xue ◽  
Xiang Dong Huang ◽  
Lian Xue

Understanding the chronological change in soil microbial community structure of tree peony garden ecosystem is important from ecological, environmental, and management perspectives. Soil samples were collected from three tree peony garden systems (5-, 12-, and 25-year-old tree peony gardens), and adjacent wasteland at Luoyang, Henan Province of China. Soil microbial community structure was analyzed by phospholipid fatty acid (PLFA) method. The bacterial and actinomycete PLFAs increased from the wasteland to 5-year-old tree peony garden and then decreased from the 5- to 25-year-old tree peony garden, and the fungal PLFA first increased and then decreased with the increasing planting years, with the greatest amount found in the 12-year-old tree peony garden. The conversion from the wasteland to tree peony garden resulted in a significant increase in Shannon index, Richness, and Evenness. However, with the succeeding development of tree peony garden ecosystems, Shannon index, Richness, and Evenness decreased from the 5- to 25-year-old tree peony garden.


2020 ◽  
Vol 69 (2) ◽  
pp. 151-164
Author(s):  
XU-JIA WANG ◽  
HONG-MEI ZHU ◽  
ZHI-QIANG REN ◽  
ZHI-GUO HUANG ◽  
CHUN-HUI WEI ◽  
...  

In the traditional fermentation process of strong-aroma Baijiu, a fermentation pit mud (FPM) provides many genera of microorganisms for fermentation. However, the functional microorganisms that have an important effect on the quality of Baijiu and their changes with the age of fermentation pit (FP) are poorly understood. Herein, the Roche 454 pyrosequencing technique and a phospholipid fatty-acid analysis were employed to reveal the structure and diversity of prokaryotic communities in FPM samples that have been aged for 5, 30, and 100 years. The results revealed an increase in total prokaryotic biomass with an FP age; however, Shannon’s diversity index decreased significantly (p < 0.01). These results suggested that a unique microbial community structure evolved with uninterrupted use of the FP. The number of functional microorganisms, which could produce the flavor compounds of strong-aroma Baijiu, increased with the FP age. Among them, Clostridium and Ruminococcaceae are microorganisms that directly produce caproic acid. The increase of their relative abundance in the FPM might have improved the quality of strong-aroma Baijiu. Syntrophomonas, Methanobacterium, and Methanocorpusculum might also be beneficial to caproic acid production. They are not directly involved but provide possible environmental factors for caproic acid production. Overall, our study results indicated that an uninterrupted use of the FP shapes the particular microbial community structure in the FPM. This research provides scientific support for the concept that the aged FP yields a high-quality Baijiu.


Sign in / Sign up

Export Citation Format

Share Document