scholarly journals Characterization of a Class II Defective Transposon Carrying Two Haloacetate Dehalogenase Genes from Delftia acidovorans Plasmid pUO1

2002 ◽  
Vol 68 (5) ◽  
pp. 2307-2315 ◽  
Author(s):  
Masahiro Sota ◽  
Masahiro Endo ◽  
Keiji Nitta ◽  
Haruhiko Kawasaki ◽  
Masataka Tsuda

ABSTRACT The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.

2017 ◽  
Vol 69 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Salma Djebbi ◽  
Amara Ben ◽  
Hanem Makni ◽  
Mohamed Makni ◽  
Maha Mezghani-Khemakhem

Mariner-like elements (MLEs) are Class-II transposons that are widely present in diverse organisms and encode a D,D34D transposase motif. MLE sequences from two coleopteran species, Bruchuspisorum and B. rufimanus were obtained using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana subfamily as primer. The characterized elements were between 1073 and 1302 bp in length and are likely to be inactive, based on the presence of multiple stop codons and/or frameshifts. A single consensus of MLE was detected in B. pisorum and was named Bpmar1. This element exhibited several conserved amino acid blocks as well as the specific D,D(34)D signature. As for B. rufimanus, two MLE consensuses, designated Brmar1 and Brmar2, were isolated, both containing deletions overlapping the internal region of the transposase. Structural and phylogenetic analysis of these sequences suggested a relatively recent origin of Bpmar1 versus a more ancient invasion of Brmar1 and Brmar2 in their respective host genomes. Given that MLEs are potential mediators of insect resistance and have been used as vectors to transfer genes into host genomes, the MLEs characterized in this study will have valuable implications for selecting appropriate transposable elements in transgenesis.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 845-854 ◽  
Author(s):  
M M Qin ◽  
D S Robertson ◽  
A H Ellingboe

Abstract The identification of the autonomous or transposase-encoding element of the Mutator (Mu) transposable element system of maize is necessary to the characterization of the system. We reported previously that a transcript homologous to the internal region of the MuA element is associated with activity of the Mutator system. We describe here the cloning of another Mu element, designated MuA2, that cosegregates with Mutator activity as assayed by somatic instability of the a1-Mum2 allele. The MuA2 element has features typical of the transposable elements of the Mutator family, including the 210-bp terminal inverted repeats. Several lines of evidence suggest that MuA2 is an autonomous or transposase-encoding element of the Mu family: (1) MuA2 cosegregates with a genetically defined element that regulates somatic mutability of the a1-Mum2 allele; (2) MuA2 is hypomethylated while most other MuA2-hybridizing sequences in the genome are extensively methylated; (3) the increase of the copy number of MuA2 is concomitant with the increase of regulator elements; (4) MuA2-like elements are found in Mutator lines but not in non-Mutator inbreds. We propose that autonomous or transposase-encoding elements of the Mu family may be structurally conserved and MuA2-like.


2003 ◽  
Vol 185 (13) ◽  
pp. 3753-3763 ◽  
Author(s):  
Dariusz Bartosik ◽  
Marta Sochacka ◽  
Jadwiga Baj

ABSTRACT We studied diversity and distribution of transposable elements residing in different strains (DSM 11072, DSM 11073, DSM 65, and LMD 82.5) of a soil bacterium Paracoccus pantotrophus (α-Proteobacteria). With application of a shuttle entrapment vector pMEC1, several novel insertion sequences (ISs) and transposons (Tns) have been identified. They were sequenced and subjected to detailed comparative analysis, which allowed their characterization (i.e., identification of transposase genes, terminal inverted repeats, as well as target sequences) and classification into the appropriate IS or Tn families. The frequency of transposition of these elements varied and ranged from 10−6 to 10−3 depending on the strain. The copy number, localization (plasmid or chromosome), and distribution of these elements in the Paracoccus species P. pantotrophus, P. denitrificans, P. methylutens, P. solventivorans, and P. versutus were analyzed. This allowed us to distinguish elements that are common in paracocci (ISPpa2, ISPpa3—both of the IS5 family—and ISPpa5 of IS66 family) as well as strain-specific ones (ISPpa1 of the IS256 family, ISPpa4 of the IS5 family, and Tn3434 and Tn5393 of the Tn3 family), acquired by lateral transfer events. These elements will be of a great value in the design of new genetic tools for paracocci, since only one element (IS1248 of P. denitrificans) has been described so far in this genus.


Genetica ◽  
2017 ◽  
Vol 145 (6) ◽  
pp. 541-558
Author(s):  
Drashti R. Parmar ◽  
Siuli Mitra ◽  
Snehalata Bhadouriya ◽  
Tirupathi Rao ◽  
Vaishnavi Kunteepuram ◽  
...  

1998 ◽  
Vol 42 (10) ◽  
pp. 2759-2761 ◽  
Author(s):  
Eric Rudant ◽  
Patrice Courvalin ◽  
Thierry Lambert

ABSTRACT Insertion sequence IS18 was detected by analysis of the spontaneous aminoglycoside resistant mutant Acinetobactersp. 13 strain BM2716-1. Insertion of the element upstream from the silent acetyltransferase gene aac(6′)-Ij created a hybrid promoter that putatively accounts for the expression of the aminoglycoside resistance gene. The 1,074-bp IS18 element contained partially matched (20 out of 26 bases) terminal inverted repeats, one of which overlapped the 3′ end of a 935-bp open reading frame potentially encoding a protein related to the transposases of the IS30 family. IS18 was found in 6 out of 29 strains of Acinetobacter sp. 13 but not in 10 strains each of A. baumannii and A. haemolyticus.


1990 ◽  
Vol 27 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Vitalia Dessi ◽  
Berta Sanchez ◽  
Marisa Garzon ◽  
Rosario Magariño ◽  
María Dolores Maldonado ◽  
...  

Virology ◽  
2007 ◽  
Vol 368 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Marija Backovic ◽  
George P. Leser ◽  
Robert A. Lamb ◽  
Richard Longnecker ◽  
Theodore S. Jardetzky

Sign in / Sign up

Export Citation Format

Share Document