hybrid promoter
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yifan Wang ◽  
Ruiyan Liu ◽  
Hong Liu ◽  
Xihai Li ◽  
Linjing Shen ◽  
...  

Abstract Background The filamentous fungus Trichoderma reesei is a widely used workhorse for cellulase production in industry due to its prominent secretion capacity of extracellular cellulolytic enzymes. However, some key components are not always sufficient in this cellulase cocktail, making the conversion of cellulose-based biomass costly on the industrial scale. Development of strong and efficient promoters would enable cellulase cocktail to be optimized for bioconversion of biomass. Results In this study, a synthetic hybrid promoter was constructed and applied to optimize the cellulolytic system of T. reesei for efficient saccharification towards corncob residues. Firstly, a series of 5’ truncated promoters in different lengths were established based on the strong constitutive promoter Pcdna1. The strongest promoter amongst them was Pcdna1-3 (− 640 to − 1 bp upstream of the translation initiation codon ATG), exhibiting a 1.4-fold higher activity than that of the native cdna1 promoter. Meanwhile, the activation region (− 821 to − 622 bp upstream of the translation initiation codon ATG and devoid of the Cre1-binding sites) of the strong inducible promoter Pcbh1 was cloned and identified to be an amplifier in initiating gene expression. Finally, this activation region was fused to the strongest promoter Pcdna1-3, generating the novel synthetic hybrid promoter Pcc. This engineered promoter Pcc drove strong gene expression by displaying 1.6- and 1.8-fold stronger fluorescence intensity than Pcbh1 and Pcdna1 under the inducible condition using egfp as the reporter gene, respectively. Furthermore, Pcc was applied to overexpress the Aspergillus niger β-glucosidase BGLA coding gene bglA and the native endoglucanase EG2 coding gene eg2, achieving 43.5-fold BGL activity and 1.2-fold EG activity increase, respectively. Ultimately, to overcome the defects of the native cellulase system in T. reesei, the bglA and eg2 were co-overexpressed under the control of Pcc promoter. The bglA-eg2 double expression strain QPEB70 exhibited a 178% increase in total cellulase activity, whose cellulase system displayed 2.3- and 2.4-fold higher saccharification efficiency towards acid-pretreated and delignified corncob residues than the parental strain, respectively. Conclusions The synthetic hybrid promoter Pcc was generated and employed to improve the cellulase system of T. reesei by expressing specific components. Therefore, construction of synthetic hybrid promoters would allow particular cellulase genes to be expressed at desired levels, which is a viable strategy to optimize the cellulolytic enzyme system for efficient biomass bioconversion.


2021 ◽  
Author(s):  
Yifan Wang ◽  
Ruiyan Liu ◽  
Hong Liu ◽  
Xihai Li ◽  
Linjing Shen ◽  
...  

Abstract Background: The filamentous fungus Trichoderma reesei is a widely used workhorse for cellulase production in industry due to its prominent secretion capacity of extracellular cellulolytic enzymes. However, some key components are not always sufficient in this cellulase cocktail, making the conversion of cellulose-based biomass costly on the industrial scale. Development of strong and efficient promoters would enable cellulase cocktail to be optimized for bioconversion of biomass.Results: In this study, a synthetic hybrid promoter was constructed and applied to optimize the cellulolytic system of T. reesei for efficient saccharification towards corncob residues. Firstly, a promoter library was established by sequence truncation based on the strong constitutive promoter Pcdna1. The strongest promoter amongst them was Pcdna1-3, exhibiting a 1.4-fold higher activity than that of the native cdna1 promoter. Meanwhile, the activation region (-821 to -622 bp upstream of the translation initiation codon ATG and devoid of the Cre1-binding sites) of the strong inducible promoter Pcbh1 was cloned and identified to be an amplifier in initiating gene expression. Finally, this activation region was fused to the strongest promoter Pcdna1-3, generating the novel synthetic hybrid promoter Pcc. This engineered promoter Pcc drove strong gene expression by displaying 1.6- and 1.8-fold stronger fluorescence intensity than Pcbh1 and Pcdna1 under the inducible condition using egfp as the reporter gene, respectively. Furthermore, Pcc was applied to overexpress the Aspergillus niger β-glucosidase BGLA coding gene bglA and the native endoglucanase EG2 coding gene eg2, achieving a 43.5-fold BGL activity and 1.2-fold EG activity increase, respectively. Ultimately, to overcome the defects of the native cellulase system in T. reesei, the bglA and eg2 were co-overexpressed under the control of Pcc promoter. The bglA-eg2 double expression strain QPEB70 exhibited a 178% increase in total cellulase activity, whose cellulase system displayed 2.3- and 2.4-fold higher saccharification efficiency towards acid-pretreated and delignified corncob residues than the parental strain, respectively.Conclusions: The synthetic hybrid promoter Pcc was generated and employed to improve the cellulase system of T. reesei by expressing specific components. Therefore, construction of synthetic hybrid promoters would allow particular cellulase genes to be expressed at desired levels, which is a viable strategy to optimize the cellulolytic enzyme system for efficient biomass bioconversion.


2021 ◽  
Author(s):  
Yu Zhao ◽  
Shiqi Liu ◽  
Zhihui Lu ◽  
Baixiang Zhao ◽  
Shuhui Wang ◽  
...  

Abstract Background: In biological cells, promoters drive gene expression by specific binding of RNA polymerase. They determine the starting position, timing and level of gene expression. Therefore, rational fine-tuning of promoters to regulate the expression levels of target genes for optimizing biosynthetic pathways in metabolic engineering has recently become an active area of research. Results: In this study, we systematically detected and characterized the common promoter elements in the unconventional yeast Yarrowia lipolytica, and constructed an artificial hybrid promoter library that covers a wide range of promoter strength. We also report for the first time that upstream activation sequences (UAS) of Saccharomyces cerevisiae promoters can be functionally transferred to Y. lipolytica. Subsequently, using the production of a versatile platform chemical isoamyl alcohol as a test study, the hybrid promoter library was applied to optimize the biosynthesis pathway expression in Y. lipolytica. By expressing the key pathway gene, ScARO10, with the promoter library, 1.1-30.3 folds increase in the isoamyl alcohol titer over that of the control strain Y. lipolytica Po1g KU70∆ was achieved. Interestingly, the highest titer increase was attained with a weak promoter PUAS1B4-EXPm to express ScARO10. These results suggest that our hybrid promoter library can be a powerful toolkit for identifying optimum promoters for expressing metabolic pathways in Y. lipolytica.Conclusion: We envision that this promoter engineering strategy and the rationally engineered promoters constructed in this study could also be extended to other non-model fungi for strain improvement.


2021 ◽  
Author(s):  
Yu Zhao ◽  
Shiqi Liu ◽  
Zhihui Lu ◽  
Baixiang Zhao ◽  
Shuhui Wang ◽  
...  

Abstract Background In biological cells, promoters drive gene expression by binding to RNA polymerase specifically. They determine the starting position, timing and level of gene expression. Therefore, rational fine-tuning of promoters to regulate the expression levels of target genes for metabolic engineering applications to optimize biosynthetic pathways has recently become an active area of research. Results In this study, we systematically detected and characterized the common promoter elements in the unconventional yeast Yarrowia lipolytica, and constructed an artificial hybrid promoter library that covers a wide range of promoter strength. We also report for the first time that upstream activation sequences (UAS) of Saccharomyces cerevisiae promoters can be functionally transferred to Y. lipolytica. Subsequently, using the production of a versatile platform chemical isoamyl alcohol as a test study, the hybrid promoter library was applied to optimize the biosynthesis pathway expression in Y. lipolytica. Under the control of PUAS1B8−LEUm, the strongest promoter we constructed, overexpression of a key pathway gene led to 7.7-fold increase in the titer of isoamyl alcohol. Interestingly, a much weaker promoter PUAS1B4−EXPm increase the isoamyl alcohol titer by 30.3-fold. These results suggest that our hybrid promoter library can be a powerful toolkit for identifying optimum promoters for expressing metabolic pathways in Y. lipolytica. Conclusion We envision that this promoter engineering strategy and the rationally engineered promoters constructed in this study could also be extended to other non-model fungi for strain improvement.


2020 ◽  
Vol 53 (3) ◽  
Author(s):  
Ammara Masood ◽  
Hira Mubeen ◽  
Nadia Iqbal ◽  
Aftab Bashir

Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1266
Author(s):  
Darrick L. Yu ◽  
Natalie Chow ◽  
Sarah K. Wootton

Jaagsiekte sheep retrovirus (JSRV) induces tumors in the distal airways of sheep and goats. A putative intragenic enhancer, termed JE, localized to the 3′ end of the JSRV env gene, has been previously described. Herein we provide further evidence that the JE functions as a transcriptional enhancer, as it was able to enhance gene expression when placed in either forward or reverse orientation when combined with a heterologous chicken beta actin promoter. We then generated novel composite promoters designed to improve transgene expression from adeno-associated virus (AAV) gene therapy vectors. A hybrid promoter consisting of the shortest JE sequence examined (JE71), the U3 region of the JSRV long terminal repeat (LTR), and the chicken beta actin promoter, demonstrated robust expression in vitro and in vivo, when in the context of AAV vectors. AAV-mediated transgene expression in vivo from the hybrid promoter was marginally lower than that observed for AAV vectors encoding the strong CAG promoter, but greatly reduced in the heart, making this promoter/enhancer combination attractive for non-cardiac applications, particularly respiratory tract or liver directed therapies. Replacement of the murine leukemia virus intron present in the original vector construct with a modified SV40 intron reduced the promoter/enhancer/intron cassette size to 719 bp, leaving an additional ~4 kb of coding capacity when packaged within an AAV vector. Taken together, we have developed a novel, compact promoter that is capable of directing high level transgene expression from AAV vectors in both the liver and lung with diminished transgene expression in the heart.


2020 ◽  
Vol 4 (4) ◽  
pp. 1900172 ◽  
Author(s):  
Burcu Gündüz Ergün ◽  
İrem Demir ◽  
Tunçer H. Özdamar ◽  
Brigitte Gasser ◽  
Diethard Mattanovich ◽  
...  

2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Nicolas Kieffer ◽  
Laurent Poirel ◽  
Linda Mueller ◽  
Stefano Mancini ◽  
Patrice Nordmann

ABSTRACT A fosfomycin-resistant and carbapenemase (OXA-48)-producing Klebsiella pneumoniae isolate was recovered, and whole-genome sequencing revealed ISEcp1-blaCTX-M-14b tandemly inserted upstream of the chromosomally encoded lysR-fosA locus. Quantitative evaluation of the expression of lysR and fosA genes showed that this insertion brought a strong hybrid promoter leading to overexpression of the fosA gene, resulting in fosfomycin resistance. This work showed the concomitant acquisition of resistance to broad-spectrum cephalosporins and fosfomycin due to a single genetic event.


2019 ◽  
Vol 15 ◽  
pp. 157-169 ◽  
Author(s):  
Katarzyna Piekarowicz ◽  
Anne T. Bertrand ◽  
Feriel Azibani ◽  
Maud Beuvin ◽  
Laura Julien ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document