scholarly journals Reactive Oxygen Species and Induction of Lignin Peroxidase in Phanerochaete chrysosporium

2003 ◽  
Vol 69 (11) ◽  
pp. 6500-6506 ◽  
Author(s):  
Paula A. Belinky ◽  
Nufar Flikshtein ◽  
Sergey Lechenko ◽  
Shimon Gepstein ◽  
Carlos G. Dosoretz

ABSTRACT We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O2) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O2 gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O2 (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O2 concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O2 is at least partially mediated by the intracellular ROS.

2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


1989 ◽  
Vol 66 (3) ◽  
pp. 1321-1327 ◽  
Author(s):  
D. S. Lee ◽  
E. A. McCallum ◽  
D. M. Olson

A differentiation-arrested primary cell culture model was used to examine the role of reactive oxygen species in the control of prostacyclin (PGI2) production in the perinatal rat lung. Coincubation of the lung cells with arachidonic acid (AA) and xanthine (X, 0.25 mM) plus xanthine oxidase (XO, 10 mU/ml) or with AA and glucose (25 mM) plus glucose oxidase (25 mU/ml) augmented the AA-induced PGI2 output. Superoxide dismutase (10 U/ml) did not alter the X + XO effect, whereas catalase (10 U/ml) eliminated both X + XO and glucose plus glucose oxidase effects. H2O2 (1–200 microM) showed a dose-related biphasic augmentation with peak stimulation at 20 microM. Catalase again blocked this effect, but dimethylthiourea, a hydroxyl radical scavenger, did not. A 20-min pretreatment of the cells with X + XO, glucose plus glucose oxidase, or H2O2, however, diminished the capacity of the cells to convert exogenous AA to PGI2. This pretreatment effect was also blocked by catalase. The responses were similar in lung cells obtained from day 20 rat fetuses (term = 22 days) and 1-day-old newborn rats. Lactate dehydrogenase release was not detected during treatment periods but increased significantly after exposure to reactive oxygen species.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 286 (5) ◽  
pp. C1152-C1158 ◽  
Author(s):  
A. McArdle ◽  
J. van der Meulen ◽  
G. L. Close ◽  
D. Pattwell ◽  
H. Van Remmen ◽  
...  

Contractions of skeletal muscles produce increases in concentrations of superoxide anions and activity of hydroxyl radicals in the extracellular space. The sources of these reactive oxygen species are not clear. We tested the hypothesis that, after a demanding isometric contraction protocol, the major source of superoxide and hydroxyl radical activity in the extracellular space of muscles is mitochondrial generation of superoxide anions and that, with a reduction in MnSOD activity, concentration of superoxide anions in the extracellular space is unchanged but concentration of hydroxyl radicals is decreased. For gastrocnemius muscles from adult (6–8 mo old) wild-type ( Sod2+/+) mice and knockout mice heterozygous for the MnSOD gene ( Sod2+/-), concentrations of superoxide anions and hydroxyl radical activity were measured in the extracellular space by microdialysis. A 15-min protocol of 180 isometric contractions induced a rapid, equivalent increase in reduction of cytochrome c as an index of superoxide anion concentrations in the extracellular space of Sod2+/+ and Sod2+/- mice, whereas hydroxyl radical activity measured by formation of 2,3-dihydroxybenzoate from salicylate increased only in the extracellular space of muscles of Sod2+/+ mice. The lack of a difference in increase in superoxide anion concentration in the extracellular space of Sod2+/+ and Sod2+/- mice after the contraction protocol supported the hypothesis that superoxide anions were not directly derived from mitochondria. In contrast, the data obtained suggest that the increase in hydroxyl radical concentration in the extracellular space of muscles from wild-type mice after the contraction protocol most likely results from degradation of hydrogen peroxide generated by MnSOD activity.


2010 ◽  
Vol 108 (4) ◽  
pp. 780-787 ◽  
Author(s):  
Kent Sahlin ◽  
Irina G. Shabalina ◽  
C. Mikael Mattsson ◽  
Linda Bakkman ◽  
Maria Fernström ◽  
...  

Exercise-induced oxidative stress is important for the muscular adaptation to training but may also cause muscle damage. We hypothesized that prolonged exercise would increase mitochondrial production of reactive oxygen species (ROS) measured in vitro and that this correlates with oxidative damage. Eight male athletes (24–32 yr) performed ultraendurance exercise (kayaking/running/cycling) with an average work intensity of 55% V̇o2peak for 24 h. Muscle biopsies were taken from vastus lateralis before exercise, immediately after exercise, and after 28 h of recovery. The production of H2O2 was measured fluorometrically in isolated mitochondria with the Amplex red and peroxidase system. Succinate-supported mitochondrial H2O2 production was significantly increased after exercise (73% higher, P = 0.025) but restored to the initial level at recovery. Plasma level of free fatty acids (FFA) increased fourfold and exceeded 1.2 mmol/l during the last 6 h of exercise. Plasma FFA at the end of exercise was significantly correlated to mitochondrial ROS production ( r = 0.74, P < 0.05). Mitochondrial content of 4-hydroxy-nonenal-adducts (a marker of oxidative damage) was increased only after recovery and was not correlated with mitochondrial ROS production. Total thiol group level and glutathione peroxidase activity were elevated after recovery. In conclusion, ultraendurance exercise increases ROS production in isolated mitochondria, but this is reversed after 28 h recovery. Mitochondrial ROS production was not correlated with oxidative damage of mitochondrial proteins, which was increased at recovery but not immediately after exercise.


2016 ◽  
Vol 473 (12) ◽  
pp. 1769-1775 ◽  
Author(s):  
Zhongxin Ma ◽  
Heather R. Williamson ◽  
Victor L. Davidson

The present study describes how oxidative damage to a protein may occur without direct contact with a reactive oxygen species, and how that radical-mediated damage can be propagated through the protein. This process is coupled to the reactivity of high-valent haems within the same protein.


Sign in / Sign up

Export Citation Format

Share Document