scholarly journals Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space

2004 ◽  
Vol 286 (5) ◽  
pp. C1152-C1158 ◽  
Author(s):  
A. McArdle ◽  
J. van der Meulen ◽  
G. L. Close ◽  
D. Pattwell ◽  
H. Van Remmen ◽  
...  

Contractions of skeletal muscles produce increases in concentrations of superoxide anions and activity of hydroxyl radicals in the extracellular space. The sources of these reactive oxygen species are not clear. We tested the hypothesis that, after a demanding isometric contraction protocol, the major source of superoxide and hydroxyl radical activity in the extracellular space of muscles is mitochondrial generation of superoxide anions and that, with a reduction in MnSOD activity, concentration of superoxide anions in the extracellular space is unchanged but concentration of hydroxyl radicals is decreased. For gastrocnemius muscles from adult (6–8 mo old) wild-type ( Sod2+/+) mice and knockout mice heterozygous for the MnSOD gene ( Sod2+/-), concentrations of superoxide anions and hydroxyl radical activity were measured in the extracellular space by microdialysis. A 15-min protocol of 180 isometric contractions induced a rapid, equivalent increase in reduction of cytochrome c as an index of superoxide anion concentrations in the extracellular space of Sod2+/+ and Sod2+/- mice, whereas hydroxyl radical activity measured by formation of 2,3-dihydroxybenzoate from salicylate increased only in the extracellular space of muscles of Sod2+/+ mice. The lack of a difference in increase in superoxide anion concentration in the extracellular space of Sod2+/+ and Sod2+/- mice after the contraction protocol supported the hypothesis that superoxide anions were not directly derived from mitochondria. In contrast, the data obtained suggest that the increase in hydroxyl radical concentration in the extracellular space of muscles from wild-type mice after the contraction protocol most likely results from degradation of hydrogen peroxide generated by MnSOD activity.

2019 ◽  
Vol 6 (12) ◽  
pp. 3734-3744 ◽  
Author(s):  
Hsin-Se Hsieh ◽  
Richard G. Zepp

Increases in the production and applications of graphene oxide (GO), coupled with reports of its toxic effects, are raising concerns about its health and ecological risks.


1995 ◽  
Vol 4 (5) ◽  
pp. 339-343 ◽  
Author(s):  
T.-L. Ching ◽  
R. M. van der Hee ◽  
N. M. Bhoelan ◽  
J. Blauw ◽  
W. M. P. B. Menge ◽  
...  

During inflammation an influx of neutrophils and release of mediators from mast cells (such as histamine) take place. The stimulated neutrophils can produce reactive oxygen species (ROS). One of these ROS is the highly reactive hydroxyl radical (OH.). It would be interesting to be able to quantify the extent of ROS formation. We investigated if histamine which is present at the inflammation site can serve as an endogenous marker for the formation of OH.. We found that histamine after incubation with OH.gave two distinct products in our HPLC system. One of the products gave the same characteristics as the synthesized 2-imidazolone derivative of histamine. This suggests that this derivative will be formed when histamine is incubated with OH..


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Author(s):  
Senlin Wang ◽  
Hong-Shuai Wu ◽  
Kai Sun ◽  
Jinzhong Hu ◽  
Fanghui Chen ◽  
...  

Recently, the toxic hydroxyl radical (·OH) has received wide interest in inducing cell apoptosis by increasing the intracellular reactive oxygen species (ROS) levels. Herein, a cationic polymer (MV-PAH) was rationally...


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sumitra Miriyala ◽  
Manikandan Panchatcharam ◽  
Meera Ramanujam ◽  
Rengarajulu Puvanakrishnan

Neutrophil infiltration plays a major role in the pathogenesis of myocardial injury. Oxidative injury is suggested to be a central mechanism of the cellular damage after acute myocardial infarction. This study is pertained to the prognostic role of a tetrapeptide derivative PEP1261 (BOC-Lys(BOC)-Arg-Asp-Ser(tBu)-OtBU), a peptide sequence (39–42) of lactoferrin, studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation, lysosomal enzymes release, and enhanced expression of C proteins. The groundwork experimentation was concerned with the isolation of neutrophils from the normal and acute myocardial infarct rats to find out the efficacy of PEP1261 in the presence of a powerful neutrophil stimulant, phorbol 12-myristate 13 acetate (PMA). Stimulation of neutrophils with PMA resulted in an oxidative burst of superoxide anion and enhanced release of lysosomal enzymes and expression of complement proteins. The present study further demonstrated that the free radicals increase the complement factors in the neutrophils confirming the role of ROS. PEP1261 treatment significantly reduced the levels of superoxide anion and inhibited the release of lysosomal enzymes in the stimulated control and infarct rat neutrophils. This study demonstrated that PEP1261 significantly inhibited the effect on the ROS generation as well as the mRNA synthesis and expression of the complement factors in neutrophils isolated from infarct heart.


2003 ◽  
Vol 98 (4) ◽  
pp. 935-943 ◽  
Author(s):  
Katsuya Tanaka ◽  
Dorothee Weihrauch ◽  
Lynda M. Ludwig ◽  
Judy R. Kersten ◽  
Paul S. Pagel ◽  
...  

Background Whether the opening of mitochondrial adenosine triphosphate-regulated potassium (K(ATP)) channels is a trigger or an end effector of anesthetic-induced preconditioning is unknown. We tested the hypothesis that the opening of mitochondrial K(ATP) channels triggers isoflurane-induced preconditioning by generating reactive oxygen species (ROS) in vivo. Methods Pentobarbital-anesthetized rabbits were subjected to a 30-min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive a vehicle (0.9% saline) or the selective mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD) alone 10 min before or immediately after a 30-min exposure to 1.0 minimum alveolar concentration (MAC) isoflurane. In another series of experiments, the fluorescent probe dihydroethidium was used to assess superoxide anion production during administration of 5-HD or the ROS scavengers N-acetylcysteine or N-2-mercaptopropionyl glycine (2-MPG) in the presence or absence of 1.0 MAC isoflurane. Myocardial infarct size and superoxide anion production were measured using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively. Results Isoflurane (P < 0.05) decreased infarct size to 19 +/- 3% (mean +/- SEM) of the left ventricular area at risk as compared to the control (38 +/- 4%). 5-HD administered before but not after isoflurane abolished this beneficial effect (37 +/- 4% as compared to 24 +/- 3%). 5-HD alone had no effect on infarct size (42 +/- 3%). Isoflurane increased fluorescence intensity. Pretreatment with N-acetylcysteine, 2-MPG, or 5-HD before isoflurane abolished increases in fluorescence, but administration of 5-HD after isoflurane only partially attenuated increases in fluorescence produced by the volatile anesthetic agent. Conclusions The results indicate that mitochondrial K(ATP) channel opening acts as a trigger for isoflurane-induced preconditioning by generating ROS in vivo.


2018 ◽  
Vol 353 ◽  
pp. 657-665 ◽  
Author(s):  
Yunfei Xue ◽  
Qian Sui ◽  
Mark L. Brusseau ◽  
Xiang Zhang ◽  
Zhaofu Qiu ◽  
...  

2008 ◽  
Vol 3 (4) ◽  
pp. 1934578X0800300
Author(s):  
Manuel Jiménez-Estrada ◽  
Ricardo Reyes-Chilpa ◽  
Arturo Navarro-Ocaña ◽  
Daniel Arrieta-Báez

To analyze the antioxidant effects of cacalol we determined its reactivity with different reactive oxygen species (ROS). Cacalol gave rise to cacalone by a specific site reaction with a hydroxyl radical. Singlet oxygen reacted only with the double bond of the furan ring, causing its rupture. On the other hand, ozone reacted with all double bonds in cacalol affording 2-methyl-hexanedioic acid as an end product. No reaction was observed with either superoxide or hydrogen peroxide. The potential antioxidant effect of cacalol as a scavenger of hydroxyl radical and singlet oxygen could be related to its function in the plant roots.


Sign in / Sign up

Export Citation Format

Share Document