scholarly journals Improving the Thermostability of Raw-Starch-Digesting Amylase from a Cytophaga sp. by Site-Directed Mutagenesis

2003 ◽  
Vol 69 (4) ◽  
pp. 2383-2385 ◽  
Author(s):  
Rong-Jen Shiau ◽  
Hui-Chen Hung ◽  
Chii-Ling Jeang

ABSTRACT A heat-stable raw-starch-digesting amylase (RSDA) was generated through PCR-based site-directed mutagenesis. At 65°C, the half-life of this mutant RSDA, which, compared with the wild-type RSDA, lacks amino acids R178 and G179, was increased 20-fold. While the wild type was inactivated completely at pH 3.0, the mutant RSDA still retained 41% of its enzymatic activity. The enhancement of RSDA thermostability was demonstrated to be via a Ca2+-independent mechanism.

2000 ◽  
Vol 350 (3) ◽  
pp. 677-683 ◽  
Author(s):  
Ana M. PAJOR ◽  
Esther S. KAHN ◽  
Rama GANGULA

The role of cationic amino acids in the Na+/dicarboxylate co-transporter NaDC-1 was investigated by site-directed mutagenesis and subsequent expression of mutant transporters in Xenopus oocytes. Of the ten residues chosen for mutagenesis, eight (Lys-34, Lys-107, Arg-108, Lys-333, Lys-390, Arg-368, Lys-414 and Arg-541) were found to be non-essential for function or targeting. Only two conserved residues, Lys-84 (at the cytoplasmic end of helix 3) and Arg-349 (at the extracellular end of helix 7), were found to be important for transport. Both mutant transporters were expressed at the plasma membrane. The mutation of Lys-84 to Ala resulted in an increased Km for succinate of 1.8mM, compared with 0.3mM in the wild-type NaDC-1. The R349A mutant had Na+ and citrate kinetics that were similar to those of the wild type. However, succinate handling in the R349A mutant was altered, with evidence of inhibition at high succinate concentrations. In conclusion, charge neutralization of Lys-84 and Arg-349 in NaDC-1 affects succinate handling, suggesting that these residues might have roles in substrate binding.


2019 ◽  
Vol 20 (24) ◽  
pp. 6224 ◽  
Author(s):  
Bangqiao Yin ◽  
Qinyan Hui ◽  
Muhammad Kashif ◽  
Ran Yu ◽  
Si Chen ◽  
...  

Butyl glucoside synthesis using bioenzymatic methods at high temperatures has gained increasing interest. Protein engineering using directed evolution of a metagenome-derived β-glucosidase of Bgl1D was performed to identify enzymes with improved activity and thermostability. An interesting mutant Bgl1D187 protein containing five amino acid substitutions (S28T, Y37H, D44E, R91G, and L115N), showed catalytic efficiency (kcat/Km of 561.72 mM−1 s−1) toward ρ-nitrophenyl-β-d-glucopyranoside (ρNPG) that increased by 23-fold, half-life of inactivation by 10-fold, and further retained transglycosidation activity at 50 °C as compared with the wild-type Bgl1D protein. Site-directed mutagenesis also revealed that Asp44 residue was essential to β-glucosidase activity of Bgl1D. This study improved our understanding of the key amino acids of the novel β-glucosidases and presented a raw material with enhanced catalytic activity and thermostability for the synthesis of butyl glucosides.


2013 ◽  
Vol 8 (4) ◽  
pp. 346-356 ◽  
Author(s):  
Alexandr Kachan ◽  
Anatoliy Evtushenkov

AbstractSeveral mutations are known to increase the thermostability of α-amylase of B. licheniformis and other α-amylases. Site-directed mutagenesis was used to introduce similar mutations into the sequence of the α-amylase gene from mesophilic Bacillus sp. 406. The influence of the mutations on thermostability of the enzyme was studied. It was shown that the Gly211Val and Asn192Phe substitutions increased the half-inactivation temperature (Tm) of the enzyme from 51.94±0.45 to 55.51±0.59 and 58.84±0.68°C respectively, in comparison to the wild-type enzyme. The deletion of Arg178-Gly179 (dRG) resulted in an increase of Tm of the α-amylase to 71.7±1.73°C. The stabilising effect of mutations was additive. When combined they increase the Tm of the wild-type amylase by more than 26°C. Thermostability rates of the triple mutant are close to the values which are typical for industrial heat-stable α-amylases, and its ability to degrade starch at 75°C was considerably increased. The present research confirmed that the Gly211Val, Asn192Phe and dRG mutations could play a significant role in thermostabilization of both mesophilic and thermophilic α-amylases.


1994 ◽  
Vol 302 (1) ◽  
pp. 291-295 ◽  
Author(s):  
A Moreau ◽  
M Roberge ◽  
C Manin ◽  
F Shareck ◽  
D Kluepfel ◽  
...  

On the basis of similarities between known xylanase sequences of the F family, three invariant acidic residues of xylanase A from Streptomyces lividans were investigated. Site-directed-mutagenesis experiments were carried out in Escherichia coli after engineering the xylanase A gene to allow its expression. Replacement of Glu-128 or Glu-236 by their isosteric form (Gln) completely abolished enzyme activity with xylan and p-nitrophenyl beta-D-cellobioside, indicating that the two substrates are hydrolysed at the same site. These two amino acids probably represent the catalytic residues. Immunological studies, which showed that the two mutants retained the same epitopes, indicate that the lack of activity is the result of the mutation rather than misfolding of the protein. Mutation D124E did not affect the kinetic parameters with xylan as substrate, but D124N reduced the Km 16-fold and the Vmax. 14-fold when compared with the wild-type enzyme. The mutations had a more pronounced effect with p-nitrophenyl beta-D-cellobioside as the substrate. Mutation D124E increased the Km and decreased the Vmax. 5-fold each, while D124N reduced the Km 4.5-fold and the Vmax. 75-fold. The mutations had no effect on the cleavage mode of xylopentaose.


2002 ◽  
Vol 364 (2) ◽  
pp. 507-515 ◽  
Author(s):  
Eric MALAUD ◽  
Delphine HOURTON ◽  
Louise Marie GIROUX ◽  
Ewa NINIO ◽  
Robin BUCKLAND ◽  
...  

CD36, a major adhesion molecule expressed by monocytes/macrophages, plays a key role in the binding and internalization of oxidized low-density lipoprotein (OxLDL). This adhesion molecule, a member of an important scavenger receptor family, contains a very short C-terminal cytoplasmic tail that is known to induce intracellular signalling events. However, the domains on the cytoplasmic tail involved in such signal transduction are unknown. In this study, we have investigated the functional components of the cytoplasmic tail by site-directed mutagenesis coupled with functional OxLDL and monoclonal antibody (mAb) binding studies. Seven truncated or punctual CD36 constructs, localized in the cytoplasmic tail, were produced by site-directed mutagenesis. Each construct was stably expressed in HEK293 cells. We used a quantitative and a qualitative method, labelling OxLDL with either iodine or rhodamine, to determine the functional importance of the cytoplasmic domains in OxLDL internalization. Results indicate that: (1) a deletion of the last amino-acid (construct K472STOP) significantly reduces, compared with wild-type, the binding, internalization and degradation of OxLDL; (2) truncation of the last six amino-acids (construct R467STOP) significantly reduces OxLDL binding; (3) the above two constructs (K472STOP and R467STOP) showed a reduced rate of OxLDL internalization compared with wild-type; (4) the binding and rate of internalization of an anti-CD36 monoclonal antibody (10/5) was not affected by the above mentioned mutants (K472STOP and R467STOP), compared with wild-type. This study shows, for the first time, a specific site on the CD36 cytoplasmic tail that is critical for the binding, endocytosis and targeting of OxLDL.


2001 ◽  
Vol 12 (10) ◽  
pp. 2012-2018 ◽  
Author(s):  
NATASCHA A. WOLFF ◽  
BETTINA GRÜNWALD ◽  
BJÖRN FRIEDRICH ◽  
FLORIAN LANG ◽  
STEFAN GODEHARDT ◽  
...  

Abstract. Three conserved cationic amino acids in predicted transmembrane domains 1, 8, and 11, respectively, of the flounder renal organic anion transporter, fROAT, were changed by site-directed mutagenesis and the resulting mutants functionally characterized inXenopus laevisoocytes. Uptake ofp-aminohippurate (PAH) in oocytes that expressed mutant H34I, K394A, or R478D was markedly reduced compared with oocytes that expressed wild-type fROAT, but was still several-fold higher than that in water-injected control oocytes. Immunocytochemically, no decrease in cell surface expression of the mutants could be detected. Only mutant R478D appeared to have a lower PAH affinity than the wild type. Similar to wild-type—dependent PAH transport, uptake induced by mutant H34I was sensitive to glutarate (GA) cis-inhibition. In contrast, mutants K394A and R478D could not be significantly affected by up to 10 mM GA, although the cRNA-dependent PAH uptake could still be almost completely suppressed by probenecid. Moreover, again in contrast to the wild type, neither PAH influx nor PAH efflux mediated by these two mutants could be trans-stimulated by GA, nor did they induce GA transport. These data suggest that amino acids K394 and R478 in fROAT are required for dicarboxylate binding and PAH/dicarboxylate exchange.


Sign in / Sign up

Export Citation Format

Share Document