cationic amino acids
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 6 (9) ◽  
pp. 2946-2955
Author(s):  
Dong Wang ◽  
Chunfa Chen ◽  
Qian Liu ◽  
Qianwen Zhao ◽  
Di Wu ◽  
...  

2021 ◽  
Vol 17 (8) ◽  
pp. e1009835
Author(s):  
Stephen J. Fairweather ◽  
Esther Rajendran ◽  
Martin Blume ◽  
Kiran Javed ◽  
Birte Steinhöfel ◽  
...  

Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is ‘trans-stimulated’ by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.


2021 ◽  
Vol 118 (32) ◽  
pp. e2025315118
Author(s):  
Xavier Leray ◽  
Rossella Conti ◽  
Yan Li ◽  
Cécile Debacker ◽  
Florence Castelli ◽  
...  

Lysosomes degrade excess or damaged cellular components and recycle their building blocks through membrane transporters. They also act as nutrient-sensing signaling hubs to coordinate cell responses. The membrane protein PQ-loop repeat-containing protein 2 (PQLC2; “picklock two”) is implicated in both functions, as it exports cationic amino acids from lysosomes and serves as a receptor and amino acid sensor to recruit the C9orf72/SMCR8/WDR41 complex to lysosomes upon nutrient starvation. Its transport activity is essential for drug treatment of the rare disease cystinosis. Here, we quantitatively studied PQLC2 transport activity using electrophysiological and biochemical methods. Charge/substrate ratio, intracellular pH, and reversal potential measurements showed that it operates in a uniporter mode. Thus, PQLC2 is uncoupled from the steep lysosomal proton gradient, unlike many lysosomal transporters, enabling bidirectional cationic amino acid transport across the organelle membrane. Surprisingly, the specific presence of arginine, but not other substrates (lysine, histidine), in the discharge (“trans”) compartment impaired PQLC2 transport. Kinetic modeling of the uniport cycle recapitulated the paradoxical substrate-yet-inhibitor behavior of arginine, assuming that bound arginine facilitates closing of the transporter’s cytosolic gate. Arginine binding may thus tune PQLC2 gating to control its conformation, suggesting a potential mechanism for nutrient signaling by PQLC2 to its interaction partners.


2021 ◽  
Author(s):  
Stephen J Fairweather ◽  
Esther Rajendran ◽  
Martin Blume ◽  
Kiran Javed ◽  
Birte Steinhoefel ◽  
...  

Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is "trans-stimulated" by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.


2021 ◽  
Vol 8 ◽  
Author(s):  
Stephen J. Fairweather ◽  
Shoko Okada ◽  
Gregory Gauthier-Coles ◽  
Kiran Javed ◽  
Angelika Bröer ◽  
...  

Amino acid transporters play a vital role in metabolism and nutrient signaling pathways. Typically, transport activity is investigated using single substrates and competing amounts of other amino acids. We used GC-MS and LC-MS for metabolic screening of Xenopus laevis oocytes expressing various human amino acid transporters incubated in complex media to establish their comprehensive substrate profiles. For most transporters, amino acid selectivity matched reported substrate profiles. However, we could not detect substantial accumulation of cationic amino acids by SNAT4 and ATB0,+ in contrast to previous reports. In addition, comparative substrate profiles of two related sodium neutral amino acid transporters known as SNAT1 and SNAT2, revealed the latter as a significant leucine accumulator. As a consequence, SNAT2, but not SNAT1, was shown to be an effective activator of the eukaryotic cellular growth regulator mTORC1. We propose, that metabolomic profiling of membrane transporters in Xenopus laevis oocytes can be used to test their substrate specificity and role in intracellular signaling pathways.


2021 ◽  
Vol 118 (8) ◽  
pp. e2014941118 ◽  
Author(s):  
Gabriel Talaia ◽  
Joseph Amick ◽  
Shawn M. Ferguson

PQLC2, a lysosomal cationic amino acid transporter, also serves as a sensor that responds to scarcity of its substrates by recruiting a protein complex composed of C9orf72, SMCR8, and WDR41 to the surface of lysosomes. This protein complex controls multiple aspects of lysosome function. Although it is known that this response to changes in cationic amino acid availability depends on an interaction between PQLC2 and WDR41, the underlying mechanism for the regulated interaction is not known. In this study, we present evidence that the WDR41–PQLC2 interaction is mediated by a short peptide motif in a flexible loop that extends from the WDR41 β-propeller and inserts into a cavity presented by the inward-facing conformation of PQLC2. The data support a transceptor model wherein conformational changes in PQLC2 related to substrate transport regulate the availability of the WDR41-binding site on PQLC2 and mediate recruitment of the WDR41-SMCR8-C9orf72 complex to the surface of lysosomes.


2021 ◽  
Vol 153 (2) ◽  
Author(s):  
Laura-Marie Winterstein ◽  
Kerri Kukovetz ◽  
Ulf-Peter Hansen ◽  
Indra Schroeder ◽  
James L. Van Etten ◽  
...  

It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro–synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.


2021 ◽  
Vol 19 (37) ◽  
pp. 8049-8056
Author(s):  
Bibhas Hazra ◽  
Mahesh Prasad ◽  
Rajat Roy ◽  
Pradip K. Tarafdar

The selection of cationic amino acids as proteinogenic over the lower analogues was highlighted. The stability of aa-tRNA, pKa perturbation and regioselectivity to α-amines could have shaped the selection of cationic amino acids.


2020 ◽  
Vol 46 (6) ◽  
pp. 2281-2298
Author(s):  
Ståle Ellingsen ◽  
Shailesh Narawane ◽  
Anders Fjose ◽  
Tiziano Verri ◽  
Ivar Rønnestad

Abstract Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney.


2020 ◽  
Author(s):  
Gabriel Talaia ◽  
Joseph Amick ◽  
Shawn M. Ferguson

ABSTRACTPQLC2, a lysosomal cationic amino acid transporter, also serves as a sensor that responds to scarcity of its substrates by recruiting a protein complex comprised of C9orf72, SMCR8 and WDR41 to the surface of lysosomes. This protein complex controls multiple aspects of lysosome function. Although it is known that this response to changes in cationic amino acid availability depends on an interaction between PQLC2 and WDR41, the underlying mechanism for the regulated interaction is not known. In this study, we establish that the WDR41-PQLC2 interaction is mediated by a short peptide motif in a flexible loop that extends from the WDR41 β-propeller and inserts into a cavity presented by the inward-facing conformation of PQLC2. This data supports a transceptor model wherein conformational changes in PQLC2 related to substrate transport regulate the availability of the WDR41 binding site on PQLC2 and mediate recruitment of the WDR41-SMCR8-C9orf72 complex to the surface of lysosomes.


Sign in / Sign up

Export Citation Format

Share Document