scholarly journals Contribution of SAR11 Bacteria to Dissolved Dimethylsulfoniopropionate and Amino Acid Uptake in the North Atlantic Ocean

2004 ◽  
Vol 70 (7) ◽  
pp. 4129-4135 ◽  
Author(s):  
Rex R. Malmstrom ◽  
Ronald P. Kiene ◽  
Matthew T. Cottrell ◽  
David L. Kirchman

ABSTRACT SAR11 bacteria are abundant in marine environments, often accounting for 35% of total prokaryotes in the surface ocean, but little is known about their involvement in marine biogeochemical cycles. Previous studies reported that SAR11 bacteria are very small and potentially have few ribosomes, indicating that SAR11 bacteria could have low metabolic activities and could play a smaller role in the flux of dissolved organic matter than suggested by their abundance. To determine the ecological activity of SAR11 bacteria, we used a combination of microautoradiography and fluorescence in situ hybridization (Micro-FISH) to measure assimilation of 3H-amino acids and [35S]dimethylsulfoniopropionate (DMSP) by SAR11 bacteria in the coastal North Atlantic Ocean and the Sargasso Sea. We found that SAR11 bacteria were often abundant in surface waters, accounting for 25% of all prokaryotes on average. SAR11 bacteria were typically as large as, if not larger than, other prokaryotes. Additionally, more than half of SAR11 bacteria assimilated dissolved amino acids and DMSP, whereas about 40% of other prokaryotes assimilated these compounds. Due to their high abundance and activity, SAR11 bacteria were responsible for about 50% of amino acid assimilation and 30% of DMSP assimilation in surface waters. The contribution of SAR11 bacteria to amino acid assimilation was greater than would be expected based on their overall abundance, implying that SAR11 bacteria outcompete other prokaryotes for these labile compounds. These data suggest that SAR11 bacteria are highly active and play a significant role in C, N, and S cycling in the ocean.

1900 ◽  
Vol 66 (424-433) ◽  
pp. 484-485

In this paper an attempt is made to investigate the normal circulation of the surface waters of the Atlantic Ocean north of 40° N. lat., and its changes, by means of a series of synoptic charts showing the distribution of temperature and salinity over the area for each month of the two years 1896 and 1897.


2011 ◽  
Vol 91 (4) ◽  
pp. 437-446 ◽  
Author(s):  
Polly G. Hill ◽  
Isabelle Mary ◽  
Duncan A. Purdie ◽  
Mikhail V. Zubkov

The history of our knowledge of the currents of the North Atlantic Ocean up to the year 1870 has been written once for all by Petermann (I), who in that year published a memoir maintaining, contrary to the opinion of Findlay, Blunt, and Carpenter, that eastern and northern extensions of the Gulf Stream were the prime factors in the circulation. Petermann subjected practically the whole of the material in the way of observations then extant to an exhaustive critical examination, and came to conclusions which are worth quoting, in the summary, inasmuch as the observations of the twenty succeeding years did not seriously modify them :— 1. The hot source and core of the Gulf Stream extends from the Strait of Florida, along the North American coast at all times.... up to the 37th degree of northern latitude.


2012 ◽  
Vol 9 (5) ◽  
pp. 1725-1739 ◽  
Author(s):  
D. Aldridge ◽  
C. J. Beer ◽  
D. A. Purdie

Abstract. Marine calcifiers, such as planktonic foraminifera, form a major component of the global carbon cycle, acting as both a source and sink of CO2. Understanding factors that affect calcification in these organisms is therefore critical in predicting how the oceans will respond to increased CO2 concentrations in the atmosphere. Here, size-normalised weights (SNWs) of the planktonic foraminifera Globigerina bulloides, collected from the surface waters of the North Atlantic Ocean, are compared with in situ carbonate ion concentrations ([CO32–]), sea-surface temperature, optimum growth conditions and nutrient concentrations. Changes in phosphate concentrations ([PO43–], range: 0.04–0.39 μM) explained the majority of G. bulloides SNW variation, with reduced test masses at higher concentrations. Two factors already known to influence calcification in foraminifers, [CO32–] and temperature, were also positively correlated over the range of values examined (148–181 μM kg−1 and 10.3–12.7 °C respectively). No evidence was found for increased SNWs under apparent optimum growth conditions, indicated by G. bulloides abundances. However, "growth potentials" (μ), derived from modelled growth rates (d–1), were positively correlated with SNWs, suggesting that this may be a better proxy for optimum growth conditions. These findings point to the potential importance of [PO43–] in determining calcification intensities in foraminifera, a factor which has been overlooked by previous studies on these organisms. The confirmation of this via carefully controlled culture studies is recommended in the future.


2008 ◽  
Vol 63 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Isabelle Mary ◽  
Glen A. Tarran ◽  
Phillip E. Warwick ◽  
Matthew J. Terry ◽  
David J. Scanlan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document