scholarly journals Real-Time Nucleic Acid Sequence-Based Amplification Assay for Detection of Hepatitis A Virus

2005 ◽  
Vol 71 (11) ◽  
pp. 7113-7116 ◽  
Author(s):  
Khaled H. Abd El Galil ◽  
M. A. El Sokkary ◽  
S. M. Kheira ◽  
Andre M. Salazar ◽  
Marylynn V. Yates ◽  
...  

ABSTRACT A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5′ noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.

2004 ◽  
Vol 70 (7) ◽  
pp. 4371-4374 ◽  
Author(s):  
Khaled H. Abd El Galil ◽  
M. A. El Sokkary ◽  
S. M. Kheira ◽  
Andre M. Salazar ◽  
Marylynn V. Yates ◽  
...  

ABSTRACT In this study, a molecular-beacon-based real-time reverse transcription (RT)-PCR assay was developed to detect the presence of hepatitis A virus (HAV) in environmental samples. A 125-bp, highly conserved 5′ noncoding region of HAV was targeted. The sensitivity of the real-time RT-PCR assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, and only HAV was positively identified. When combined with immunomagnetic separation, the real-time RT-PCR assay successfully detected as few as 20 PFU in seeded groundwater samples. Because of its simplicity and specificity, this assay has broad applications for the rapid detection of HAV in contaminated foods or water.


2001 ◽  
Vol 67 (12) ◽  
pp. 5593-5600 ◽  
Author(s):  
Julie Jean ◽  
Burton Blais ◽  
André Darveau ◽  
Ismaı̈l Fliss

ABSTRACT A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 × 102 PFU/ml) was obtained with NASBA, compared to 50 PFU (1 × 104PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.


2007 ◽  
Vol 73 (5) ◽  
pp. 1457-1466 ◽  
Author(s):  
Else M. Fykse ◽  
Gunnar Skogan ◽  
William Davies ◽  
Jaran Strand Olsen ◽  
Janet M. Blatny

ABSTRACT A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.


1987 ◽  
Vol 8 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Betty H. Robertson ◽  
Vicid K. Brown ◽  
Daniel W. Bradley

Sign in / Sign up

Export Citation Format

Share Document