Differential effects of human immunodeficiency virus type 1 envelope protein gp120 on interferon production by mononuclear cells from adults and neonates.

1995 ◽  
Vol 2 (4) ◽  
pp. 434-438 ◽  
Author(s):  
M P Nair ◽  
K C Chadha ◽  
I Stadler ◽  
A Sweet ◽  
S A Schwartz
1998 ◽  
Vol 177 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Donatella Pietrella ◽  
Claudia Monari ◽  
Cinzia Retini ◽  
Barbara Palazzetti ◽  
Francesco Bistoni ◽  
...  

2002 ◽  
Vol 76 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Heather D. Foley ◽  
Miguel Otero ◽  
Jan M. Orenstein ◽  
Roger J. Pomerantz ◽  
Matthias J. Schnell

ABSTRACT We describe replication-competent, vaccine strain-based rabies viruses (RVs) that lack their own single glycoprotein and express, instead, a chimeric RV-human immunodeficiency virus type 1 (HIV-1) envelope protein composed of the ectodomain and transmembrane domains of HIV-1 gp160 and the cytoplasmic domain of RV G. The envelope proteins from both X4 (NL4-3)- and R5X4 (89.6)-tropic HIV-1 strains were utilized. These recombinant viruses very closely mimicked an HIV-1- like tropism, as indicated by blocking experiments. Infection was inhibited by SDF-1 on cells expressing CD4 and CXCR4 for both viruses, whereas RANTES abolished infection of cells expressing CCR5 in addition to CD4 in studies of the RV expressing HIV-189.6 Env. In addition, preincubation with soluble CD4 or monoclonal antibodies directed against HIV-1 gp160 blocked the infectivity of both G-deficient viruses but did not affect the G-containing RVs. Our results also indicated that the G-deficient viruses expressing HIV-1 envelope protein, in contrast to wild-type RV but similar to HIV-1, enter cells by a pH-independent pathway. As observed for HIV-1, the surrogate viruses were able to target human peripheral blood mononuclear cells, macrophages, and immature and mature human dendritic cells (DC). Moreover, G-containing RV-based vectors also infected mature human DC, indicating that infection of these cells is also supported by RV G. The ability of RV-based vectors to infect professional antigen-presenting cells efficiently further emphasizes the potential use of recombinant RVs as vaccines.


2001 ◽  
Vol 75 (16) ◽  
pp. 7266-7279 ◽  
Author(s):  
Dai Wang ◽  
Cynthia de la Fuente ◽  
Longwen Deng ◽  
Lai Wang ◽  
Irene Zilberman ◽  
...  

ABSTRACT Cyclin-dependent kinases (cdk's) have recently been suggested to regulate human immunodeficiency virus type 1 (HIV-1) transcription. Previously, we have shown that expression of one cdk inhibitor, p21/Waf1, is abrogated in HIV-1 latently infected cells. Based on this result, we investigated the transcription of HIV-1 in the presence of chemical drugs that specifically inhibited cdk activity and functionally mimicked p21/Waf1 activity. HIV-1 production in virally integrated lymphocytic and monocytic cell lines, such as ACH2, 8E5, and U1, as well as activated peripheral blood mononuclear cells infected with syncytium-inducing (SI) or non-syncytium-inducing (NSI) HIV-1 strains, were all inhibited by Roscovitine, a purine derivative that reversibly competes for the ATP binding site present in cdk's. The decrease in viral progeny in the HIV-1-infected cells was correlated with a decrease in the transcription of HIV-1 RNAs in cells treated with Roscovitine and not with the non-cdk general cell cycle inhibitors, such as hydroxyurea (G1/S blocker) or nocodazole (M-phase blocker). Cyclin A- and E-associated histone H1 kinases, as well as cdk 7 and 9 activities, were all inhibited in the presence of Roscovitine. The 50% inhibitory concentration of Roscovitine on cdk's 9 and 7 was determined to be ∼0.6 μM. Roscovitine could selectively sensitize HIV-1-infected cells to apoptosis at concentrations that did not impede the growth and proliferation of uninfected cells. Apoptosis induced by Roscovitine was found in both latent and activated infected cells, as evident by Annexin V staining and the cleavage of the PARP protein by caspase-3. More importantly, contrary to many apoptosis-inducing agents, where the apoptosis of HIV-1-infected cells accompanies production and release of infectious HIV-1 viral particles, Roscovitine treatment selectively killed HIV-1-infected cells without virion release. Collectively, our data suggest that cdk's are required for efficient HIV-1 transcription and, therefore, we propose specific cdk inhibitors as potential antiviral agents in the treatment of AIDS.


Sign in / Sign up

Export Citation Format

Share Document