scholarly journals Haemophilus influenzae: antibiotic susceptibility.

1988 ◽  
Vol 1 (2) ◽  
pp. 218-227 ◽  
Author(s):  
C A Needham

Ampicillin resistance was first reported among clinical isolates of Haemophilus influenzae in 1972. Reports of chloramphenicol resistance followed shortly thereafter. The principal mechanism of resistance to these two antibiotics is enzymatic. Although other mechanisms have been described, they are found in comparatively few strains. The genetic information for the inactivating enzymes is plasmid mediated and therefore readily transmissible to susceptible strains. Consequently, effective therapy for invasive disease caused by this pathogen has been seriously compromised. As antibiotic susceptibility became less predictable, in vitro testing became increasingly important. Unfortunately, the standardization of methods for laboratory testing has been slow and complicated by the fastidious nature of the organisms. This review traces the development of antibiotic resistance in H. influenzae, discusses the mechanisms which appear to be important in mediating resistance, explores newer antimicrobial agents which might be useful in the treatment of infection, and analyzes the various approaches to in vitro testing.

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Brian D. VanScoy ◽  
Elizabeth A. Lakota ◽  
Haley Conde ◽  
Jennifer McCauley ◽  
Lawrence Friedrich ◽  
...  

ABSTRACT Omadacycline is a novel aminomethylcycline with activity against Gram-positive and -negative organisms, including Haemophilus influenzae, which is one of the leading causes of community-acquired bacterial pneumonia (CABP). The evaluation of antimicrobial agents against H. influenzae using standard murine infection models is challenging due to the low pathogenicity of this species in mice. Therefore, 24-h dose-ranging studies using a one-compartment in vitro infection model were undertaken with the goal of characterizing the magnitude of the ratio of the area under the concentration-time curve (AUC) to the MIC (AUC/MIC ratio) associated with efficacy for a panel of five H. influenzae isolates. These five isolates, for which MIC values were 1 or 2 mg/liter, were exposed to omadacycline total-drug epithelial lining fluid (ELF) concentration-time profiles based on those observed in healthy volunteers following intravenous omadacycline administration. Relationships between change in log10 CFU/ml from baseline at 24 h and the total-drug ELF AUC/MIC ratios for each isolate and for the isolates pooled were evaluated using Hill-type models and nonlinear least-squares regression. As evidenced by the high coefficients of determination (r2) of 0.88 to 0.98, total-drug ELF AUC/MIC ratio described the data well for each isolate and the isolates pooled. The median total-drug ELF AUC/MIC ratios associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 6.91, 8.91, and 11.1, respectively. These data were useful to support the omadacycline dosing regimens selected for the treatment of patients with CABP, as well as susceptibility breakpoints for H. influenzae.


Author(s):  
Michael B. Smith ◽  
P. Rocco LaSala ◽  
Gail L. Woods

2016 ◽  
Vol 82 (12) ◽  
pp. 3591-3598 ◽  
Author(s):  
Sarah Forbes ◽  
Christopher G. Knight ◽  
Nicola L. Cowley ◽  
Alejandro Amézquita ◽  
Peter McClure ◽  
...  

ABSTRACTMicrobicides are broad-spectrum antimicrobial agents that generally interact with multiple pharmacological targets. While they are widely deployed in disinfectant, antiseptic, and preservative formulations, data relating to their potential to select for microbicide or antibiotic resistance have been generated mainly by testing the compounds in much simpler aqueous solutions. In the current investigation, antibiotic susceptibility was determined for bacteria that had previously exhibited decreased microbicide susceptibility following repeated exposure to microbicides either in formulation with sequestrants and surfactants or in simple aqueous solution. Statistically significant increases in antibiotic susceptibility occurred for 12% of bacteria after exposure to microbicides in formulation and 20% of bacteria after exposure to microbicides in aqueous solutions, while 22% became significantly less susceptible to the antibiotics, regardless of formulation. Of the combinations of a bacterium and an antibiotic for which British Society for Antimicrobial Chemotherapy breakpoints are available, none became resistant. Linear modeling taking into account phylogeny, microbicide, antibiotic, and formulation identified small but significant effects of formulation that varied depending on the bacterium and microbicide. Adaptation to formulated benzalkonium chloride in particular was more likely to increase antibiotic susceptibility than adaptation to the simple aqueous solution. In conclusion, bacterial adaptation through repeated microbicide exposure was associated with both increases and decreases in antibiotic susceptibility. Formulation of the microbicide to which the bacteria had previously adapted had an identifiable effect on antibiotic susceptibility, but it effect was typically small relative to the differences observed among microbicides. Susceptibility changes resulting in resistance were not observed.IMPORTANCEThe safety of certain microbicide applications has been questioned due to the possibility that microbicide exposure could select for microbicide and antibiotic resistance. Evidence that this may happen is based mainly onin vitroexperiments where bacteria have been exposed to microbicides in aqueous solution. Microbicides are, however, normally deployed in products formulated with surfactants, sequestrants, and other compounds. While this may influence the frequency and extent of susceptibility changes, few studies reported in the literature have assessed this. In the current investigation, therefore, we have investigated changes in antibiotic susceptibility in bacteria which exhibited decreased microbicide susceptibility following repeated exposure to microbicides in simple aqueous solutions and in formulation. We report that the microbicide formulation had an identifiable effect on antibiotic susceptibility, but it was typically small relative to the differences observed among microbicides. We did not observe susceptibility changes resulting in resistance.


2021 ◽  
Vol 9 (12) ◽  
pp. 2473
Author(s):  
Clémence Beauruelle ◽  
Claudie Lamoureux ◽  
Arsid Mashi ◽  
Sophie Ramel ◽  
Jean Le Bihan ◽  
...  

Bacteria belonging to the genus Achromobacter are increasingly isolated from respiratory samples of people with cystic fibrosis (PWCF). The management of this multidrug-resistant genus is challenging and characterised by a lack of international recommendations, therapeutic guidelines and data concerning antibiotic susceptibility, especially concerning the newer antibiotics. The objective of this study was to describe the antibiotic susceptibility of Achromobacter isolates from PWCF, including susceptibility to new antibiotics. The minimum inhibitory concentrations (MICs) of 22 antibiotics were determined for a panel of 23 Achromobacter isolates from 19 respiratory samples of PWCF. Two microdilution MIC plates were used: EUMDROXF® plate (Sensititre) and Micronaut-S Pseudomonas MIC® plate (Merlin) and completed by a third method if necessary (E-test® or UMIC®). Among usual antimicrobial agents, the most active was imipenem (70% susceptibility). Trimethoprim-sulfamethoxazole, piperacillin and tigecycline (65%, 56% and 52% susceptibility, respectively) were still useful for the treatment of Achromobacter infections. Among new therapeutic options, β-lactams combined with a β-lactamase-inhibitor did not bring benefits compared to β-lactam alone. On the other hand, cefiderocol appeared as a promising therapeutic alternative for managing Achromobacter infections in PWCF. This study provides the first results on the susceptibility of clinical Achromobacter isolates concerning new antibiotics. More microbiological and clinical data are required to establish the optimal treatment of Achromobacter infections.


2021 ◽  
Vol 70 (6) ◽  
Author(s):  
Kosei Mizoi ◽  
Takeaki Wajima ◽  
Emi Tanaka ◽  
Hidemasa Nakaminami ◽  
Norihisa Noguchi

The increasing incidence of Haemophilus influenzae with decreased susceptibility to quinolones (quinolone low-susceptible H. influenzae ) in Japan has raised concerns about therapeutic failure. Thus, assessment of effective antimicrobial agents is necessary to establish an effective therapeutic strategy against resulting infections. In this study, in vitro bactericidal effects of quinolones on low-susceptible H. influenzae strains were evaluated using time-kill curve analysis. For tosufloxacin, log reduction values for low-susceptible strains were significantly lower than those for susceptible strains at both Cmax and 1/2 Cmax. Conversely, although the log reduction values were lower for susceptible strains, the Cmax of levofloxacin and β-lactams (amoxicillin and cefditoren) indicated bactericidal effects. In addition, higher concentrations of tosufloxacin at 2×Cmax and 4×Cmax had bactericidal effects on not only susceptible but also low-susceptible strains. These data strongly suggest that we should consider the presence of low-susceptible strains and reconsider the appropriate dosage of tosufloxacin for treatment, especially for paediatric patients.


Sign in / Sign up

Export Citation Format

Share Document