chloramphenicol resistance
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 36)

H-INDEX

50
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Anusak Kerdsin ◽  
Rujirat Hatrongjit ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Peechanika Chopjitt ◽  
...  

Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 is prevalent among patient and swine infections, other serotypes are occasionally detected in humans. Of these, serotype 24 clonal complex (CC) 221/234 are recognized as emerging clones of human infection. Genomic exploration of three S. suis serotype 24 CC221/234 strains revealed antimicrobial resistance genes, pathotyping, virulence-associated gene (VAG) profiles, minimum core genome (MCG) typing, and comparison of the genomes. Based on these analyzes, all three serotype 24 strains were MCG7-3 and should be classified in the intermediate/weakly virulent (I/WV) group. All selected serotype 24 strains were susceptible to several antibiotics including β-lactam, fluoroquinolone, and chloramphenicol. Resistance to tetracycline, macrolide, and clindamycin was observed and attributed to the genes tet(O) and erm(B). Genomic comparison revealed the strains S12X, LSS66, LS0L, LS0E, 92–4,172, and IMT40201 that had phylogenetic affinity with serotype 24 CC221/234. Analysis of 80 virulence-associated genes (VAG) showed that all three serotype 24 strains lacked 24 genes consisting of adhesin P, epf, hyl, ihk, irr, mrp, nadR, neuB, NisK/R, ofs, permease (SSU0835), rgg, revS, salK/R, sao, sly, spyM3_0908, srtBCD, srtF, srtG, SSU05_0473, virA, virB4, and virD4. Eleven specific sequences were identified in the 3 serotype 24 genomes that differed from the genomes of the representative strains of epidemic (E; SC84), highly virulent (HV; P1/7), I/WV (89–1,591), and avirulent (T15 and 05HAS68).


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1547
Author(s):  
Arun Gonzales Decano ◽  
Kerry Pettigrew ◽  
Wilber Sabiiti ◽  
Derek J. Sloan ◽  
Stella Neema ◽  
...  

Urinary tract infection (UTI) develops after a pathogen adheres to the inner lining of the urinary tract. Cases of UTIs are predominantly caused by several Gram-negative bacteria and account for high morbidity in the clinical and community settings. Of greater concern are the strains carrying antimicrobial resistance (AMR)-conferring genes. The gravity of a UTI is also determined by a spectrum of other virulence factors. This study represents a pilot project to investigate the burden of AMR among uropathogens in East Africa. We examined bacterial samples isolated in 2017–2018 from in- and out-patients in Kenya (KY) and Uganda (UG) that presented with clinical symptoms of UTI. We reconstructed the evolutionary history of the strains, investigated their population structure, and performed comparative analysis their pangenome contents. We found 55 Escherichia coli and 19 Klebsiella pneumoniae strains confirmed uropathogenic following screening for the prevalence of UTI virulence genes including fimH, iutA, feoA/B/C, mrkD, and foc. We identified 18 different sequence types in E. coli population while all K. pneumoniae strains belong to ST11. The most prevalent E. coli sequence types were ST131 (26%), ST335/1193 (10%), and ST10 (6%). Diverse plasmid types were observed in both collections such as Incompatibility (IncF/IncH/IncQ1/IncX4) and Col groups. Pangenome analysis of each set revealed a total of 2862 and 3464 genes comprised the core genome of E. coli and K. pneumoniae population, respectively. Among these are acquired AMR determinants including fluoroquinolone resistance-conferring genes aac(3)-Ib-cr and other significant genes: aad, tet, sul1, sul2, and cat, which are associated with aminoglycoside, tetracycline, sulfonamide, and chloramphenicol resistance, respectively. Accessory genomes of both species collections were detected several β-lactamase genes, blaCTX-M, blaTEM and blaOXA, or blaNDM. Overall, 93% are multi-drug resistant in the E. coli collection while 100% of the K. pneumoniae strains contained genes that are associated with resistance to three or more antibiotic classes. Our findings illustrate the abundant acquired resistome and virulome repertoire in uropathogenic E. coli and K. pneumoniae, which are mainly disseminated via clonal and horizontal transfer, circulating in the East African region. We further demonstrate here that routine genomic surveillance is necessary for high-resolution bacterial epidemiology of these important AMR pathogens.


2021 ◽  
Vol 8 (4) ◽  
pp. 274-278
Author(s):  
Pendru Raghunath ◽  
L N Rao Sadanand

Pyoderma is a common acute superficial bacterial skin infection which is highly contagious. In the great majority of cases, pyoderma is caused by , , or both. The present study was carried out to determine the prevalence and antibiotic susceptibility of isolated from pyoderma in Dr. VRK Women’s Teaching hospital. Swabs or pus samples were collected from 250 patients attending Dermatology, outpatient department (OPD) of Dr. VRK Women’s Teaching hospital. Samples were inoculated onto 5% sheep blood agar plates and incubated for 24 h at 37°C in a candle jar. BHS isolates were phenotypically identified by standard microbiological techniques, all the isolates presumptively identified as BHS were tested for Bacitracin susceptibility. Presumptive identification of a strain as a Group A Streptococcus (GAS) was also made by PYRase test. Presumptively identified GAS isolates were serogrouped by Lancefield grouping using a commercially available latex agglutination test. isolates were subjected to antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method. BHS were isolated from 30% of samples. Prevalence of BHS was more among 0-10 years age group (38%). BHS were isolated more frequently from males (38.8%). were isolated from 52 (20.8%) samples. All 52 isolates were found to be susceptible to Penicillin G, amoxicillin, ceftriaxone, azithromycin and vancomycin. Erythromycin and clindamycin showed good activity with sensitivity rates of 92.3% & 96.1%, respectively. Resistance to tetracycline (59.6%) and chloramphenicol (23.1%) was commonly seen in . This study reports the prevalence and antibiotic susceptibility of isolated from pyoderma in Dr. VRK Women’s Teaching hospital. Results of this study suggests the peak incidence of pyoderma in children aged 0 to 10 years and male preponderance. Our study also reports high prevalence of tetracycline and chloramphenicol resistance in .


2021 ◽  
Author(s):  
◽  
Janine Sharma

<p>DNA ligases are fundamental enzymes in molecular biology and biotechnology where they perform essential reactions, e.g. to create recombinant DNA and for adaptor attachment in next-generation sequencing. T4 DNA ligase is the most widely used commercial ligase owing to its ability to catalyse ligation of blunt-ended DNA termini. However, even for T4 DNA ligase, blunt-end ligation is an inefficient activity compared to cohesive-end ligation, or its evolved activity of sealing single-strand nicks in double-stranded DNA. Previous research from Dr Wayne Patrick showed that fusion of T4 DNA ligase to a DNA-binding domain increases the enzyme’s affinity for DNA substrates, resulting in improved ligation efficiency. It was further shown that changes to the linker region between the ligase and DNA-binding domain resulted in altered ligation activity. To assist in optimising this relationship, we designed a competitive ligase selection protocol to enrich for engineered ligase variants with greater blunt-end ligation activity. This selection involves expressing a DNA ligase from its plasmid construct, and ligating a linear form of its plasmid, sealing a double-strand DNA break in the chloramphenicol resistance gene, permitting bacterial growth. Previous researcher Dr Katherine Robins created two linker libraries of 33 and 37 variants, from lead candidate ligase-cTF and (the less active form of p50-ligase variant) ligase-p50, respectively. Five rounds of selection were applied to each library. One linker variant, denoted ligase-CA3 showed the greatest improvement, comprising 42% of the final selected ligase-cTF population. In contrast, a lead linker variant from the ligase-p50 library was not obtained. In this study one additional round of selection was applied to the ligase-p50 library to test whether a lead variant would emerge. However, the linker variants selected at the end of Round 6 did not suggest a clear lead candidate, so one of the top variants (ligase-PPA17) was selected to represent this population in a fluorescence-based ligation assay that I optimised. Following identification of optimal reaction buffers to improve protein stability and DNA ligation, six engineered variants were compared for blunt-, cohesive-end, and nick sealing ligation activities. All five engineered variants exhibited improved blunt-end ligation activity over T4 DNA ligase. Ligase-PPA17 (1.9-fold improvement over T4 DNA ligase) was best performing for blunt-end ligation. This study found no evidence that ligase-CA3 was significantly improved over its predecessor, ligase-cTF in blunt-end ligation, however it was the best performing variant at cohesive-end ligation. Overall, we have evolved DNA ligase variants with improved blunt-end ligation activity over T4 DNA ligase which may be more advantageous in molecular biology and biotechnology for a variety of applications.</p>


2021 ◽  
Author(s):  
◽  
Janine Sharma

<p>DNA ligases are fundamental enzymes in molecular biology and biotechnology where they perform essential reactions, e.g. to create recombinant DNA and for adaptor attachment in next-generation sequencing. T4 DNA ligase is the most widely used commercial ligase owing to its ability to catalyse ligation of blunt-ended DNA termini. However, even for T4 DNA ligase, blunt-end ligation is an inefficient activity compared to cohesive-end ligation, or its evolved activity of sealing single-strand nicks in double-stranded DNA. Previous research from Dr Wayne Patrick showed that fusion of T4 DNA ligase to a DNA-binding domain increases the enzyme’s affinity for DNA substrates, resulting in improved ligation efficiency. It was further shown that changes to the linker region between the ligase and DNA-binding domain resulted in altered ligation activity. To assist in optimising this relationship, we designed a competitive ligase selection protocol to enrich for engineered ligase variants with greater blunt-end ligation activity. This selection involves expressing a DNA ligase from its plasmid construct, and ligating a linear form of its plasmid, sealing a double-strand DNA break in the chloramphenicol resistance gene, permitting bacterial growth. Previous researcher Dr Katherine Robins created two linker libraries of 33 and 37 variants, from lead candidate ligase-cTF and (the less active form of p50-ligase variant) ligase-p50, respectively. Five rounds of selection were applied to each library. One linker variant, denoted ligase-CA3 showed the greatest improvement, comprising 42% of the final selected ligase-cTF population. In contrast, a lead linker variant from the ligase-p50 library was not obtained. In this study one additional round of selection was applied to the ligase-p50 library to test whether a lead variant would emerge. However, the linker variants selected at the end of Round 6 did not suggest a clear lead candidate, so one of the top variants (ligase-PPA17) was selected to represent this population in a fluorescence-based ligation assay that I optimised. Following identification of optimal reaction buffers to improve protein stability and DNA ligation, six engineered variants were compared for blunt-, cohesive-end, and nick sealing ligation activities. All five engineered variants exhibited improved blunt-end ligation activity over T4 DNA ligase. Ligase-PPA17 (1.9-fold improvement over T4 DNA ligase) was best performing for blunt-end ligation. This study found no evidence that ligase-CA3 was significantly improved over its predecessor, ligase-cTF in blunt-end ligation, however it was the best performing variant at cohesive-end ligation. Overall, we have evolved DNA ligase variants with improved blunt-end ligation activity over T4 DNA ligase which may be more advantageous in molecular biology and biotechnology for a variety of applications.</p>


Author(s):  
Nan Lu ◽  
Chenglin Zhang ◽  
Wenjie Zhang ◽  
Haoran Xu ◽  
Yuhong Li ◽  
...  

Corynebacterium glutamicum is one of the important industrial microorganisms for production of amino acids and other value-added compounds. Most expression vectors used in C. glutamicum are based on inducible promoter (Ptac or Ptrc) activated by isopropyl-β-D-thiogalactopyranoside (IPTG). However, these vectors seem unsuitable for large-scale industrial production due to the high cost and toxicity of IPTG. Myo-inositol is an ideal inducer because of its non-toxicity and lower price. In this study, a myo-inositol-inducible expression vector pMI-4, derived from the expression vector pXMJ19, was constructed. Besides the original chloramphenicol resistance gene cat, multiple cloning sites, and rrnB terminator, the pMI-4 (6,643 bp) contains the iolRq cassette and the myo-inositol-inducible promoter PiolT1. The pMI-4 could stably replicate in the C. glutamicum host. Meanwhile, the non-myo-inositol degradation host strain C. glutamicumΔiolGΔoxiCΔoxiDΔoxiE for maintaining the pMI-4 was developed. Overexpression of hemAM and hemL using pMI-4 resulted in a significant accumulation of 5-aminolevulinic acid, indicating its potential application in metabolic engineering and industrial fermentation.


Author(s):  
Kathia Lüneberg ◽  
Carlos F. Amabile-Cuevas ◽  
Eduardo Mucito-Varela ◽  
Leticia Martínez ◽  
Eva Salinas ◽  
...  

While monitoring the presence of antibiotic resistance in municipal wastewater bacteria from Mexico City, five Escherichia coli isolates were detected to be resistant to carbapenems, antibiotics of “last resort” used mostly in hospitals. Further analysis revealed that these carbapenem-resistant isolates carried the gene for a metallo-beta-lactamase, NDM-5. The gene was found to be beared by a large, ~145 kb conjugative plasmid, which also carries putative genes encoding resistance to sulfonamides, trimethoprim, tetracycline, ciprofloxacin, chloramphenicol (although no phenotypic chloramphenicol resistance was detected) and quaternary-ammonium compounds. The plasmid also carried gene mobility determinants, such as an integron integrase, and two transposases. In addition to the direct public health threat posed by the presence of such multi-resistant organisms in wastewater released into the environment and used for crop irrigation; it is particularly concerning that carbapenem-resistant E. coli is rather rare in Mexican hospitals (<1%), but was found in small, 100-mL samples of municipal wastewater. This could suggest that, either these organisms are under-reported by clinical microbiology laboratories, underlining the usefulness of wastewater monitoring; or that there is an unknown source of such carbapenem-resistant organisms that are being dumped into the wastewater. The source of these bacteria must be assessed and controlled to prevent the further spread of this multi-resistance plasmid among other environmental and clinical microorganisms.


Author(s):  
Oyama Gxalo ◽  
Tennison O. Digban ◽  
Bright E. Igere ◽  
Ola A. Olapade ◽  
Anthony I. Okoh ◽  
...  

The study investigated the occurrence of antimicrobial resistance genes and virulence determinants in Vibrio species recovered from different freshwater sheds in rustic milieu. A total of 118 Vibrio isolates comprising Vibrio fluvialis (n=41), Vibrio mimicus (n=40) and V. vulnificus (n=37) was identified by amplification of ToxR, vmh and hsp60 genes. The amplification of virulence genes indicated that V. mimicus (toxR, zot, ctx, VPI, and ompU) genes were detected in 12.5%, 32.5%, 45%, 37.5% and 10% respectively. V. fluvialis genes (stn, hupO and vfh) were harboured in 48.8%, 14.6% and 19.5% isolates congruently. The other virulence genes that include vcgC and vcgE were observed in 63.1% and 29% of isolates belonging to V. vulnificus. With the exceptions of imipenem, meropenem and ciprofloxacin, most isolates exhibited more than 50% resistance to antibiotics. The antimicrobial resistance was more prevalent for polymyxin B (100%), azithromycin (100%) and least in ciprofloxacin (16.1%). Multiple antibiotic resistance index range was 0.3 and 0.8 with most isolates showing MARI of 0.8. The blaTEM, AmpC, blaGES, blaIMP, blaOXA-48 and blaKPC genes were detected in 53.3%, 42%, 29.6%, 16.6%, 15%, 11.3% and 5.6% of the isolates. Non-beta lactamases such as streptomycin resistance (aadA and strA), gentamicin resistance (aphA1) and quinolone resistance gene (qnrVC) were found in 5.2%, 44.3%, 26% and 2.8%. Chloramphenicol resistance genes (cmlA1 and catII) were found in 5.2% and 44.3% among the isolates. Our findings reveal the presence of antimicrobial resistance genes and virulent Vibrio species in aquatic environment which can have potential risk to human and animal’s health.


2021 ◽  
pp. 1808-1814
Author(s):  
Amany A. Arafa ◽  
Riham H. Hedia ◽  
Nagwa S. Ata ◽  
Eman S. Ibrahim

Background and Aim: Upper respiratory tract infections are common in horses and can be caused by a variety of pathogens, mainly Streptococcus equi subsp. equi, which are a significant equine pathogen causing major health issues as well as financial losses to the equine industry. This study aimed to determine the prevalence of Streptococcal bacteria in equines in Egypt, and characterize vancomycin-resistant S. equi subsp. equi phenotypically and genotypically. Materials and Methods: S. equi subsp. equi was isolated from internal nares of horses. All strains were confirmed by polymerase chain reaction-based detection of Streptococcus genus-specific 16S rRNA, sodA and seeI genes. Antibiotic susceptibility was determined phenotypically using the disk diffusion method. Genotypic detection of antibiotic resistance genes was performed by analyzing as β-lactamase resistance (blaZ), tetracycline resistance (tetK), vancomycin resistance (vanA), and chloramphenicol resistance (fexA). Results: Eight streptococcal isolates were confirmed as S. equi subsp. equi. The genotypic characterization of antibiotic resistance showed resistance to vanA and tetK, with a frequency of 87.5% and 12.5%, respectively, while the frequency of sensitivity was 100% for blaz gene and fexA gene. Conclusion: In this study, we assessed vancomycin-resistant S. equi subsp. equi from equines suffering from respiratory manifestation in Egypt.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 876
Author(s):  
Giovanna Mendoza-Mujica ◽  
Diana Flores-León ◽  
Joaquim Ruiz

The presence of amino acid changes in GyrA, GyrB, ParC, ParE, and in a proposed chromosomal chloramphenicol acetyl transferase (CAT), as well as mutations at 23S rRNA, were established by PCR and sequencing in 38 B. bacilliformis clinical isolates from four different areas in Peru. Eighteen out of 24 (75%) isolates showing ciprofloxacin resistance for both disk-diffusion and e-test presented amino acid substitutions in GyrA (G89C, six isolates, A91V, 1 isolate) GyrB (S474F, 10 isolates) or both (GyrA D95N and GyrB S474F, one isolate). Two out of 14 susceptible isolates presented amino acid substitutions at GyrB (S474F) or a double substitution GyrA D95N and GyrB S474F. Of note, ciprofloxacin-resistant isolates were recovered in the four areas studied. No amino acid change was observed at ParC or ParE. Only one isolate showed chloramphenicol resistance, but no alteration was present in either 23S rRNA or CAT. B. bacilliformis resistant to quinolones are extended throughout Peru, with amino acid substitutions at GyrA or GyrB as the main, albeit not exclusive, cause. B. bacilliformis seems to have an apparent facility to develop mutations on GyrB outside the classical positions 91, 95 of GyrA and 85, 88 of ParC.


Sign in / Sign up

Export Citation Format

Share Document