scholarly journals Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice

2016 ◽  
Vol 23 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Mahtab Moayeri ◽  
Jacqueline M. Tremblay ◽  
Michelle Debatis ◽  
Igor P. Dmitriev ◽  
Elena A. Kashentseva ◽  
...  

ABSTRACTBacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated theirin vivoefficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors.

2011 ◽  
Vol 79 (11) ◽  
pp. 4609-4616 ◽  
Author(s):  
Clinton E. Leysath ◽  
Kuang-Hua Chen ◽  
Mahtab Moayeri ◽  
Devorah Crown ◽  
Rasem Fattah ◽  
...  

ABSTRACTBacillus anthracisis the causative agent of anthrax, and the tripartite anthrax toxin is an essential element of its pathogenesis. Edema factor (EF), a potent adenylyl cyclase, is one of the toxin components. In this work, anti-EF monoclonal antibodies (MAb) were produced following immunization of mice, and four of the antibodies were fully characterized. MAb 3F2 has an affinity of 388 pM, was most effective for EF detection, and appears to be the first antibody reported to neutralize EF by binding to the catalytic CBdomain. MAb 7F10 shows potent neutralization of edema toxin activityin vitroandin vivo; it targets the N-terminal protective antigen binding domain. The four MAb react with three different domains of edema factor, and all were able to detect purified edema factor in Western blot analysis. None of the four MAb cross-reacted with the lethal factor toxin component. Three of the four MAb protected mice in both a systemic edema toxin challenge model and a subcutaneous spore-induced foreleg edema model. A combination of three of the MAb also significantly delayed the time to death in a third subcutaneous spore challenge model. This appears to be the first direct evidence that monoclonal antibody-mediated neutralization of EF alone is sufficient to delay anthrax disease progression.


2013 ◽  
Vol 57 (9) ◽  
pp. 4139-4145 ◽  
Author(s):  
Mahtab Moayeri ◽  
Devorah Crown ◽  
Guan-Sheng Jiao ◽  
Seongjin Kim ◽  
Alan Johnson ◽  
...  

ABSTRACTBacillus anthracis, the causative agent of anthrax, manifests its pathogenesis through the action of two secreted toxins. The bipartite lethal and edema toxins, a combination of lethal factor or edema factor with the protein protective antigen, are important virulence factors for this bacterium. We previously developed small-molecule inhibitors of lethal factor proteolytic activity (LFIs) and demonstrated theirin vivoefficacy in a rat lethal toxin challenge model. In this work, we show that these LFIs protect against lethality caused by anthrax infection in mice when combined with subprotective doses of either antibiotics or neutralizing monoclonal antibodies that target edema factor. Significantly, these inhibitors provided protection against lethal infection when administered as a monotherapy. As little as two doses (10 mg/kg) administered at 2 h and 8 h after spore infection was sufficient to provide a significant survival benefit in infected mice. Administration of LFIs early in the infection was found to inhibit dissemination of vegetative bacteria to the organs in the first 32 h following infection. In addition, neutralizing antibodies against edema factor also inhibited bacterial dissemination with similar efficacy. Together, our findings confirm the important roles that both anthrax toxins play in establishing anthrax infection and demonstrate the potential for small-molecule therapeutics targeting these proteins.


2018 ◽  
Vol 86 (6) ◽  
Author(s):  
Yuliya I. Seldina ◽  
Courtney D. Petro ◽  
Stephanie L. Servetas ◽  
James M. Vergis ◽  
Christy L. Ventura ◽  
...  

ABSTRACTBacillus cereusG9241 caused a life-threatening anthrax-like lung infection in a previously healthy human. This strain harbors two large virulence plasmids, pBCXO1 and pBC210, that are absent from typicalB. cereusisolates. The pBCXO1 plasmid is nearly identical to pXO1 fromBacillus anthracisand carries genes (pagA1,lef, andcya) for anthrax toxin components (protective antigen [called PA1 in G9241], lethal factor [LF], and edema factor [EF], respectively). The plasmid also has an intact hyaluronic acid capsule locus. The pBC210 plasmid has a tetrasaccharide capsule locus, a gene for a PA1 homolog called PA2 (pagA2), and a gene (cer) for Certhrax, an ADP-ribosyltransferase toxin that inactivates vinculin. LF, EF, and Certhrax require PA for entry into cells. In this study, we asked what role PA1, PA2, LF, and Certhrax play in the pathogenicity of G9241. To answer this, we generated isogenic deletion mutations in the targeted toxin gene components and then assessed the strains for virulence in highly G9241-susceptible (A/J) and moderately G9241-sensitive (C57BL/6) mice. We found that full virulence of G9241 required PA1 and LF, while PA2 contributed minimally to pathogenesis of G9241 but could not functionally replace PA1 as a toxin-binding subunitin vivo. Surprisingly, we discovered that Certhrax attenuated the virulence of G9241; i.e., a ΔcerΔlefmutant strain was more virulent than a Δlefmutant strain following subcutaneous inoculation of A/J mice. Moreover, the enzymatic activity of Certhrax contributed to this phenotype. We concluded that Certhrax acts as an antivirulence factor in the anthrax-like organismB. cereusG9241.


2013 ◽  
Vol 81 (6) ◽  
pp. 1880-1888 ◽  
Author(s):  
Mary Ann Pohl ◽  
Johanna Rivera ◽  
Antonio Nakouzi ◽  
Siu-Kei Chow ◽  
Arturo Casadevall

ABSTRACTMonoclonal antibodies (MAbs) are potential therapeutic agents againstBacillus anthracistoxins, since there is no current treatment to counteract the detrimental effects of toxemia. In hopes of isolating new protective MAbs to the toxin component lethal factor (LF), we used a strain of mice (C57BL/6) that had not been used in previous studies, generating MAbs to LF. Six LF-binding MAbs were obtained, representing 3 IgG isotypes and one IgM. One MAb (20C1) provided protection from lethal toxin (LeTx) in anin vitromouse macrophage system but did not provide significant protectionin vivo. However, the combination of two MAbs to LF (17F1 and 20C1) provided synergistic increases in protection bothin vitroandin vivo. In addition, when these MAbs were mixed with MAbs to protective antigen (PA) previously generated in our laboratory, these MAb combinations produced synergistic toxin neutralizationin vitro. But when 17F1 was combined with another MAb to LF, 19C9, the combination resulted in enhanced lethal toxicity. While no single MAb to LF provided significant toxin neutralization, LF-immunized mice were completely protected from infection withB. anthracisstrain Sterne, which suggested that a polyclonal response is required for effective toxin neutralization. In total, these studies show that while a single MAb against LeTx may not be effective, combinations of multiple MAbs may provide the most effective form of passive immunotherapy, with the caveat that these may demonstrate emergent properties with regard to protective efficacy.


2006 ◽  
Vol 74 (2) ◽  
pp. 1266-1272 ◽  
Author(s):  
Yehoshua Gozes ◽  
Mahtab Moayeri ◽  
Jason F. Wiggins ◽  
Stephen H. Leppla

ABSTRACT Bacillus anthracis lethal toxin (LT) is a bipartite toxin composed of protective antigen (PA) and lethal factor (LF). Injection of LT produces clinical signs characteristic of anthrax infection, including pleural edema and vascular collapse in various animal models. We utilized the classic Miles leakage assay to quantify vascular leakage in mice. LT injected intradermally induced leakage as early as 15 to 25 min in some inbred mouse strains, but not in others, whereas PA or LF individually did not induce leakage. A third component of anthrax toxin, edema factor, did not induce leakage alone or with PA. Leakage was quantified in eight mouse strains, and no correlation was found between sensitivity to intradermal leakage and sensitivity to the lethality of systemically administered LT. The leakage could be inhibited by ketotifen, an inhibitor of mast cell degranulation, but not by azelastine, a histamine receptor 1 antagonist, or by ketanserin, a serotonin 5-HT2A receptor antagonist. LT was cytotoxic to MC/9 mast cells (in vitro) by 7 h after toxin treatment but did not induce histamine release from these cells. Mast cell-deficient mice exhibited the leakage event and had no increased resistance to systemic LT. Human umbilical vein endothelial cells were resistant to LT over 12 h, with only 20% of cells succumbing by 24 h, suggesting that endothelial cell killing is not the cause of the rapid LT-mediated leakage event. We describe here a ketotifen-sensitive vascular leakage event induced by LT which is the most rapid in vivo or in vitro LT-mediated effect reported to date.


2011 ◽  
Vol 79 (8) ◽  
pp. 3012-3019 ◽  
Author(s):  
Melissa K. Wilson ◽  
James M. Vergis ◽  
Farhang Alem ◽  
John R. Palmer ◽  
Andrea M. Keane-Myers ◽  
...  

ABSTRACTBacillus cereusG9241 was isolated from a welder with a pulmonary anthrax-like illness. The organism contains two megaplasmids, pBCXO1 and pBC218. These plasmids are analogous to theBacillus anthracisAmes plasmids pXO1 and pXO2 that encode anthrax toxins and capsule, respectively. Here we evaluated the virulence ofB. cereusG9241 as well as the contributions of pBCXO1 and pBC218 to virulence.B. cereusG9241 was avirulent in New Zealand rabbits after subcutaneous inoculation and attenuated 100-fold compared to the published 50% lethal dose (LD50) values forB. anthracisAmes after aerosol inoculation. A/J and C57BL/6J mice were comparably susceptible toB. cereusG9241 by both subcutaneous and intranasal routes of infection. However, the LD50s forB. cereusG9241 in both mouse strains were markedly higher than those reported forB. anthracisAmes and more like those of the toxigenic but nonencapsulatedB. anthracisSterne. Furthermore,B. cereusG9241 spores could germinate and disseminate after intranasal inoculation into A/J mice, as indicated by the presence of vegetative cells in the spleen and blood of animals 48 h after infection. Lastly,B. cereusG9241 derivatives cured of one or both megaplasmids were highly attenuated in A/J mice. We conclude that the presence of the toxin- and capsule-encoding plasmids pBCXO1 and pBC218 inB. cereusG9241 alone is insufficient to render the strain as virulent asB. anthracisAmes. However, likeB. anthracis, full virulence ofB. cereusG9241 for mice requires the presence of both plasmids.


2010 ◽  
Vol 84 (16) ◽  
pp. 8172-8180 ◽  
Author(s):  
Jeffrey L. Americo ◽  
Bernard Moss ◽  
Patricia L. Earl

ABSTRACT Infection with monkeypox virus (MPXV) causes disease manifestations in humans that are similar, although usually less severe, than those of smallpox. Since routine vaccination for smallpox ceased more than 30 years ago, there is concern that MPXV could be used for bioterrorism. Thus, there is a need to develop animal models to study MPXV infection. Accordingly, we screened 38 inbred mouse strains for susceptibility to MPXV. Three highly susceptible wild-derived inbred strains were identified, of which CAST/EiJ was further developed as a model. Using an intranasal route of infection with an isolate of the Congo Basin clade of MPXV, CAST/EiJ mice exhibited weight loss, morbidity, and death in a dose-dependent manner with a calculated 50% lethal dose (LD50) of 680 PFU, whereas there were no deaths of BALB/c mice at a 10,000-fold higher dose. CAST/EiJ mice exhibited greater MPXV sensitivity when infected via the intraperitoneal route, with an LD50 of 14 PFU. Both routes resulted in MPXV replication in the lung, spleen, and liver. Intranasal infection with an isolate of the less-pathogenic West African clade yielded an LD50 of 7,600 PFU. The immune competence of CAST/EiJ mice was established by immunization with vaccinia virus, which induced antigen-specific T- and B-lymphocyte responses and fully protected mice from lethal doses of MPXV. The new mouse model has the following advantages for studying pathogenesis of MPXV, as well as for evaluation of potential vaccines and therapeutics: relative sensitivity to MPXV through multiple routes, genetic homogeneity, available immunological reagents, and commercial production.


2010 ◽  
Vol 54 (11) ◽  
pp. 4750-4757 ◽  
Author(s):  
Gaobing Wu ◽  
Yuzhi Hong ◽  
Aizhen Guo ◽  
Chunfang Feng ◽  
Sha Cao ◽  
...  

ABSTRACT Effective measures for the prophylaxis and treatment of anthrax are still required for counteracting the threat posed by inhalation anthrax. In this study, we first demonstrated that the chimeric protein LFn-PA, created by fusing the protective antigen (PA)-binding domain of lethal factor (LFn) to PA, retained the functions of the respective molecules. On the basis of this observation, we attempted to develop an antitoxin that targets the binding of lethal factor (LF) and/or edema factor (EF) to PA and the transportation of LF/EF. Therefore, we replaced PA in LFn-PA with a dominant-negative inhibitory PA (DPA), i.e., PAF427D. In in vitro models of anthrax intoxication, the LFn-DPA chimera showed 3-fold and 2-fold higher potencies than DPA in protecting sensitive cells against anthrax lethal toxin (LeTx) and edema toxin (EdTx), respectively. In animal models, LFn-DPA exhibited strong potency in rescuing mice from lethal challenge with LeTx. We also evaluated the immunogenicity and immunoprotective efficacy of LFn-DPA as an anthrax vaccine candidate. In comparison with recombinant PA, LFn-DPA induced significantly higher levels of the anti-PA immune response. Moreover, LFn-DPA elicited an anti-LF antibody response that could cross-react with EF. Mice immunized with LFn-DPA tolerated a LeTx challenge that was 5 times its 50% lethal dose. Thus, LFn-DPA represents a highly effective trivalent vaccine candidate for both preexposure and postexposure vaccination. Overall, we have developed a novel and dually functional reagent for the prophylaxis and treatment of anthrax.


2006 ◽  
Vol 13 (6) ◽  
pp. 671-677 ◽  
Author(s):  
Robert Mabry ◽  
Kathleen Brasky ◽  
Robert Geiger ◽  
Ricardo Carrion ◽  
Gene B. Hubbard ◽  
...  

ABSTRACT Several strategies that target anthrax toxin are being developed as therapies for infection by Bacillus anthracis. Although the action of the tripartite anthrax toxin has been extensively studied in vitro, relatively little is known about the presence of toxins during an infection in vivo. We developed a series of sensitive sandwich enzyme-linked immunosorbent assays (ELISAs) for detection of both the protective antigen (PA) and lethal factor (LF) components of the anthrax exotoxin in serum. The assays utilize as capture agents an engineered high-affinity antibody to PA, a soluble form of the extracellular domain of the anthrax toxin receptor (ANTXR2/CMG2), or PA itself. Sandwich immunoassays were used to detect and quantify PA and LF in animals infected with the Ames or Vollum strains of anthrax spores. PA and LF were detected before and after signs of toxemia were observed, with increasing levels reported in the late stages of the infection. These results represent the detection of free PA and LF by ELISA in the systemic circulation of two animal models exposed to either of the two fully virulent strains of anthrax. Simple anthrax toxin detection ELISAs could prove useful in the evaluation of potential therapies and possibly as a clinical diagnostic to complement other strategies for the rapid identification of B. anthracis infection.


2012 ◽  
Vol 80 (8) ◽  
pp. 2623-2631 ◽  
Author(s):  
Haim Levy ◽  
Shay Weiss ◽  
Zeev Altboum ◽  
Josef Schlomovitz ◽  
Itai Glinert ◽  
...  

ABSTRACTThe virulence ofBacillus anthracis, the causative agent of anthrax, stems from its antiphagocytic capsule, encoded by pXO2, and the tripartite toxins encoded by pXO1. The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play major roles in pathogenicity. We tested this assumption by a systematic study of mutants with combined deletions of thepag,lef, andcyagenes, encoding protective antigen (PA), lethal factor (LF), and edema factor (EF), respectively. The resulting seven mutants (single, double, and triple) were evaluated following subcutaneous (s.c.) and intranasal (i.n.) inoculation in rabbits and guinea pigs. In the rabbit model, virulence is completely dependent on the presence of PA. Any mutant bearing apagdeletion behaved like a pXO1-cured mutant, exhibiting complete loss of virulence with attenuation indices of over 2,500,000 or 1,250 in the s.c. or i.n. route of infection, respectively. In marked contrast, in guinea pigs, deletion ofpagor even of all three toxin components resulted in relatively moderate attenuation, whereas the pXO1-cured bacteria showed complete attenuation. The results indicate that a pXO1-encoded factor(s), other than the toxins, has a major contribution to the virulence mechanism ofB. anthracisin the guinea pig model. These unexpected toxin-dependent and toxin-independent manifestations of pathogenicity in different animal models emphasize the importance and need for a comprehensive evaluation ofB. anthracisvirulence in general and in particular for the design of relevant next-generation anthrax vaccines.


Sign in / Sign up

Export Citation Format

Share Document