scholarly journals Identification of Wild-Derived Inbred Mouse Strains Highly Susceptible to Monkeypox Virus Infection for Use as Small Animal Models

2010 ◽  
Vol 84 (16) ◽  
pp. 8172-8180 ◽  
Author(s):  
Jeffrey L. Americo ◽  
Bernard Moss ◽  
Patricia L. Earl

ABSTRACT Infection with monkeypox virus (MPXV) causes disease manifestations in humans that are similar, although usually less severe, than those of smallpox. Since routine vaccination for smallpox ceased more than 30 years ago, there is concern that MPXV could be used for bioterrorism. Thus, there is a need to develop animal models to study MPXV infection. Accordingly, we screened 38 inbred mouse strains for susceptibility to MPXV. Three highly susceptible wild-derived inbred strains were identified, of which CAST/EiJ was further developed as a model. Using an intranasal route of infection with an isolate of the Congo Basin clade of MPXV, CAST/EiJ mice exhibited weight loss, morbidity, and death in a dose-dependent manner with a calculated 50% lethal dose (LD50) of 680 PFU, whereas there were no deaths of BALB/c mice at a 10,000-fold higher dose. CAST/EiJ mice exhibited greater MPXV sensitivity when infected via the intraperitoneal route, with an LD50 of 14 PFU. Both routes resulted in MPXV replication in the lung, spleen, and liver. Intranasal infection with an isolate of the less-pathogenic West African clade yielded an LD50 of 7,600 PFU. The immune competence of CAST/EiJ mice was established by immunization with vaccinia virus, which induced antigen-specific T- and B-lymphocyte responses and fully protected mice from lethal doses of MPXV. The new mouse model has the following advantages for studying pathogenesis of MPXV, as well as for evaluation of potential vaccines and therapeutics: relative sensitivity to MPXV through multiple routes, genetic homogeneity, available immunological reagents, and commercial production.

2009 ◽  
Vol 90 (2) ◽  
pp. 323-333 ◽  
Author(s):  
Christina L. Hutson ◽  
Victoria A. Olson ◽  
Darin S. Carroll ◽  
Jason A. Abel ◽  
Christine M. Hughes ◽  
...  

Multiple monkeypox virus (MPXV) animal models have been discussed in previous studies, but no small animal models, nor most non-human primate models, demonstrated the protracted asymptomatic incubation phase seen in systemic human orthopoxvirus illness. Herein, we characterize a black-tailed prairie dog (PD) (Cynomys ludovicianus) model of infection, via intranasal and intradermal exposures, with the two MPXV clades. Daily observations of the animals were made (food consumption, general symptoms, disease presentation), while weights and virus evaluations (ocular, nasal, oropharyngeal, faeces, blood) were obtained/made every third day. Generalized rash became apparent 9–12 days post-infection for all animals. Individual animals demonstrated a range of symptoms consistent with human monkeypox disease. Measurable viraemias and excretas were similar for both clade-representative strains and persisted until at least day 21. Greater morbidity was observed in Congo Basin strain-challenged animals and mortality was observed only in the Congo Basin strain-challenged animals. The PD model is valuable for the study of strain-dependent differences in MPXV. Additionally, the model closely mimics human systemic orthopoxvirus disease and may serve as a valuable non-human surrogate for investigations of antivirals and next generation orthopoxvirus vaccines.


2018 ◽  
Author(s):  
Alexis M. Ceasrine ◽  
Eugene E. Lin ◽  
David N. Lumelsky ◽  
Nelmari Ruiz-Otero ◽  
Erica D. Boehm ◽  
...  

ABSTRACTTamoxifen, a selective estrogen receptor modulator, is widely used in mouse models to temporally control gene expression but is also known to affect body composition. Here, we report that tamoxifen has significant and sustained effects on glucose tolerance, independent of effects on insulin sensitivity, in mice. Intraperitoneal, but not oral, tamoxifen delivery improved glucose tolerance in three inbred mouse strains. The extent and persistence of tamoxifen-induced effects were sex- and strain-dependent. These findings highlight the need to revise commonly used tamoxifen-based protocols for gene manipulation in mice by including longer chase periods following injection, oral delivery, and the use of tamoxifen-treated littermate controls.


Genetics ◽  
1982 ◽  
Vol 100 (1) ◽  
pp. 79-87
Author(s):  
Daniel W Nebert ◽  
Nancy M Jensen ◽  
Hisashi Shinozuka ◽  
Heinz W Kunz ◽  
Thomas J Gill

ABSTRACT Forty-four inbred and four randombred rat strains and 20 inbred mouse strains were examined for their Ah phenotype by determining the induction of liver microsomal aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity (EC 1.14.14.1) by intraperitoneal treatment with either β-naphthoflavone or 3-methylcholanthrene. All 48 rat strains were found to be Ah-responsive. The maximally induced hydroxylase specific activities of the ALB/Pit, MNR/Pit, MR/Pit, SHR/Pit, and Sprague-Dawley strains were of the same order of magnitude as the basal hydroxylase specific activities of the ACI/Pit, F344/Pit, OKA/Pit, and MNR/N strains. Six of the 20 mouse strains were Ah-nonresponsive (i.e. lacking the normal induction response and presumably lacking detectable amounts of the Ah receptor). The basal hydroxylase specific activities of the BDL/N, NFS/N, STAR/N, and ST/JN mouse strains were more than twice as high as the maximally induced hydroxylase specific activity of the CBA/HT strain.——To date, 24 Ah-nonresponsive mouse strains have been identified, out of a total of 68 known to have been characterized. The reasons for not finding a single Ah-nonresponsive inbred rat strain—as compared with about one Ah-nonresponsive inbred mouse strain found for every three examined—remain unknown.


1999 ◽  
Vol 40 (2) ◽  
pp. 295-301 ◽  
Author(s):  
John J. Albers ◽  
Wendy Pitman ◽  
Gertrud Wolfbauer ◽  
Marian C. Cheung ◽  
Hal Kennedy ◽  
...  

2012 ◽  
Vol 13 (1) ◽  
pp. 94 ◽  
Author(s):  
Holger Hackstein ◽  
Andreas Wachtendorf ◽  
Sabine Kranz ◽  
Jürgen Lohmeyer ◽  
Gregor Bein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document