scholarly journals L-Ficolin/Mannose-Binding Lectin-Associated Serine Protease Complexes Bind to Group B Streptococci Primarily through N-Acetylneuraminic Acid of Capsular Polysaccharide and Activate the Complement Pathway

2007 ◽  
Vol 76 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Youko Aoyagi ◽  
Elisabeth E. Adderson ◽  
Craig E. Rubens ◽  
John F. Bohnsack ◽  
Jin G. Min ◽  
...  

ABSTRACT Group B streptococci (GBS) are the most common cause of neonatal sepsis and meningitis. Most infants who are colonized with GBS at birth do not develop invasive disease, although many of these uninfected infants lack protective levels of capsular polysaccharide (CPS)-specific antibody. The lectin pathway of complement is a potential mechanism for initiating opsonization of GBS with CPS-specific antibody-deficient serum. In this study, we determined whether mannose-binding lectin (MBL)/MBL-associated serine protease (MASP) complexes and L-ficolin/MASP complexes bind to different strains of GBS to activate the lectin pathway, and we identified the molecules recognized by lectins on the GBS surface. We found that MBL did not bind to any GBS examined, whereas L-ficolin bound to GBS cells of many serotypes. L-ficolin binding to GBS cells correlated with the CPS content in serotypes Ib, III (restriction digestion pattern types III-2 and III-3), and V but not with the group B-specific polysaccharide (GBPS) content or with the lipoteichoic acid (LTA) content. L-ficolin bound to purified CPS and GBPS in a concentration-dependent manner but not to purified LTA. All strains to which L-ficolin/MASP complexes bound consumed C4. When N-acetylneuraminic acid (NeuNAc) was selectively removed from GBS cells by treatment with neuraminidase, the reduction in L-ficolin binding was correlated with the amount of NeuNAc removed. Additionally, L-ficolin was able to bind to wild-type strains but was able to bind only weakly to unencapsulated mutants and a mutant strain in which the CPS lacks NeuNAc. We concluded that L-ficolin/MASP complexes bind to GBS primarily through an interaction with NeuNAc of CPS.

2004 ◽  
Vol 174 (1) ◽  
pp. 418-425 ◽  
Author(s):  
Youko Aoyagi ◽  
Elisabeth E. Adderson ◽  
Jin G. Min ◽  
Misao Matsushita ◽  
Teizo Fujita ◽  
...  

2009 ◽  
Vol 207 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Minoru Takahashi ◽  
Yumi Ishida ◽  
Daisuke Iwaki ◽  
Kazuko Kanno ◽  
Toshiyuki Suzuki ◽  
...  

The complement system is an essential component of innate immunity, participating in the pathogenesis of inflammatory diseases and in host defense. In the lectin complement pathway, mannose-binding lectin (MBL) and ficolins act as recognition molecules, and MBL-associated serine protease (MASP) is a key enzyme; MASP-2 is responsible for the lectin pathway activation. The function of other serine proteases (MASP-1 and MASP-3) is still obscure. In this study, we generated a MASP-1– and MASP-3–deficient mouse model (Masp1/3−/−) and found that no activation of the alternative pathway was observed in Masp1/3−/− serum. Mass spectrometric analysis revealed that circulating complement factor D (Df) in Masp1/3−/− mice is a zymogen (pro-Df) with the activation peptide QPRGR at its N terminus. These results suggested that Masp1/3−/− mice failed to convert pro-Df to its active form, whereas it was generally accepted that the activation peptide of pro-Df is removed during its secretion and factor D constitutively exists in an active form in the circulation. Furthermore, recombinant MASP-1 converted pro-Df to the active form in vitro, although the activation mechanism of pro-Df by MASP-1 is still unclear. Thus, it is clear that MASP-1 is an essential protease of both the lectin and alternative complement pathways.


2000 ◽  
Vol 68 (2) ◽  
pp. 688-693 ◽  
Author(s):  
Olaf Neth ◽  
Dominic L. Jack ◽  
Alister W. Dodds ◽  
Helen Holzel ◽  
Nigel J. Klein ◽  
...  

ABSTRACT Mannose-binding lectin (MBL) is a collagenous serum lectin believed to be of importance in innate immunity. Genetically determined low levels of the protein are known to predispose to infections. In this study the binding of purified MBL to pathogens isolated from immunocompromised children was investigated by flow cytometry. DiverseCandida species, Aspergillus fumigatus,Staphylococcus aureus, and beta-hemolytic group A streptococci exhibited strong binding of MBL, whereas Escherichia coli, Klebsiella species, and Haemophilus influenzae type b were characterized by heterogeneous binding patterns. In contrast, beta-hemolytic group B streptococci,Streptococcus pneumoniae, and Staphylococcus epidermidis showed low levels of binding. Bound MBL was able to promote C4 deposition in a concentration-dependent manner. We conclude that MBL may be of importance in first-line immune defense against several important pathogens.


2015 ◽  
Vol 67 (2) ◽  
pp. 287-293 ◽  
Author(s):  
Nicole Drentin ◽  
Paul Conroy ◽  
Menachem J. Gunzburg ◽  
Robert N. Pike ◽  
Lakshmi C. Wijeyewickrema

Sign in / Sign up

Export Citation Format

Share Document